A novel concept is proposed in the present study for improving the square-array jet impingement heat transfer by integrating a synthetic jet actuator into the array unit.To illustrate the potential of this concept,an ...A novel concept is proposed in the present study for improving the square-array jet impingement heat transfer by integrating a synthetic jet actuator into the array unit.To illustrate the potential of this concept,an experimental investigation is performed,wherein two jet Reynolds numbers(Re=3000 and 5000),three hole-to-hole pitches(X/d=Y/d=4,5 and 6),and three impinging distances(H/d=2,6 and 10)are considered while the synthetic jet is actuated at a fixed frequency of 180 Hz with a characteristic Reynolds number(Re_(0))of about 2430.The results show that the synthetic jet has rare influence on the stagnation heat transfer of square-array jet but effectively improves the local heat transfer at the central zone of array unit.Its potential is tightly dependent on the array layout,Reynolds number and impinging distance.In general,the spatially-averaged Nusselt number augment behaves more significantly for the situations with smaller jet Reynolds number and bigger impinging distance.展开更多
A tri-dimensional lobed nozzle is concerned in the jet impingement on a flat target and a concave target in the current study. The jet impingement heat transfer experiments are conducted under two jet Reynolds numbers...A tri-dimensional lobed nozzle is concerned in the jet impingement on a flat target and a concave target in the current study. The jet impingement heat transfer experiments are conducted under two jet Reynolds numbers(Re=10000 and 20000) and four nozzle-to-surface distances(H/d=2, 4, 6 and 8). Simultaneously, to characterize the flow dynamics of lobed jet impingement onto different target surfaces, some computations are conducted under a specific jet Reynolds number. The results show that the lobed jet is capable of achieving an increase of stagnation Nusselt number about 25% in relative to the round jet at small nozzle-tosurface distances. However, at large nozzle-to-surface distances, the lobed jet otherwise weakens the convective heat transfer in the vicinity of jet stagnation, especially under high jet Reynolds number. When compared to the flat target, approximately a20%–30% reduction of stagnation Nusselt number is produced on a concave target, which is attributed to the combined effect of destabilization and confinement due to the concave curvature.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.52206091)the Natural Science Foundation of Jiangsu Province (Grant No.BK20210303)+1 种基金Interdisciplinary Innovation Fund for Doctoral Students of Nanjing University of Aeronautics and Astronautics (Grant No.KXKCXJJ202309)Advanced Jet Propulsion Innovation (Grant No.HKCX2022-01-001)。
文摘A novel concept is proposed in the present study for improving the square-array jet impingement heat transfer by integrating a synthetic jet actuator into the array unit.To illustrate the potential of this concept,an experimental investigation is performed,wherein two jet Reynolds numbers(Re=3000 and 5000),three hole-to-hole pitches(X/d=Y/d=4,5 and 6),and three impinging distances(H/d=2,6 and 10)are considered while the synthetic jet is actuated at a fixed frequency of 180 Hz with a characteristic Reynolds number(Re_(0))of about 2430.The results show that the synthetic jet has rare influence on the stagnation heat transfer of square-array jet but effectively improves the local heat transfer at the central zone of array unit.Its potential is tightly dependent on the array layout,Reynolds number and impinging distance.In general,the spatially-averaged Nusselt number augment behaves more significantly for the situations with smaller jet Reynolds number and bigger impinging distance.
基金supported by the National Natural Science Foundation of China(Grant No.51776097)the Postgraduate Research and Practice Innovation Project of Jiangsu Province(Grant No.KYCX17 0280)
文摘A tri-dimensional lobed nozzle is concerned in the jet impingement on a flat target and a concave target in the current study. The jet impingement heat transfer experiments are conducted under two jet Reynolds numbers(Re=10000 and 20000) and four nozzle-to-surface distances(H/d=2, 4, 6 and 8). Simultaneously, to characterize the flow dynamics of lobed jet impingement onto different target surfaces, some computations are conducted under a specific jet Reynolds number. The results show that the lobed jet is capable of achieving an increase of stagnation Nusselt number about 25% in relative to the round jet at small nozzle-tosurface distances. However, at large nozzle-to-surface distances, the lobed jet otherwise weakens the convective heat transfer in the vicinity of jet stagnation, especially under high jet Reynolds number. When compared to the flat target, approximately a20%–30% reduction of stagnation Nusselt number is produced on a concave target, which is attributed to the combined effect of destabilization and confinement due to the concave curvature.