Electrides are unique ionic compounds that electrons serve as the anions. Many electrides with fascinating physical and chemical properties have been discovered at ambient condition. Under pressure, electrides are als...Electrides are unique ionic compounds that electrons serve as the anions. Many electrides with fascinating physical and chemical properties have been discovered at ambient condition. Under pressure, electrides are also revealed to be ubiquitous crystal morphology, enriching the geometrical topologies and electronic properties of electrides. In this Review,we overview the formation mechanism of high-pressure electrides(HPEs) and outline a scheme for exploring new HPEs from pre-design, CALYPSO assisted structural searches, indicators for electrides, to experimental synthesis. Moreover, the evolution of electronic dimensionality under compression is also discussed to better understand the dimensional distribution of anionic electrons in HPEs.展开更多
Developing and understanding electron-rich electrides offers a promising opportunity for a variety of electronic and catalytic applications.Using a geometrical identification strategy,here we identify a new class of e...Developing and understanding electron-rich electrides offers a promising opportunity for a variety of electronic and catalytic applications.Using a geometrical identification strategy,here we identify a new class of electride material,yttrium/scandium chlorides Y(Sc)_(x)Cl_(y)(yx<2).Anionic electrons are found in the metal octahedral framework topology.The diverse electronic dimensionality of these electrides is quantified explicitly by quasi-two-dimensional(2D)electrides for[YCl]^(+)∙e−and[ScCl]^(+∙)e−and one-dimensional(1D)electrides for[Y_(2)Cl_(3)]^(+)∙e−,[Sc_(7)Cl_(10)]^(+)∙e−,and[Sc5Cl8]2+∙2e−with divalent metal elements(Sc^(2+):3d^(1) and Y^(2+):4d^(1)).The localized anionic electrons were confined within the inner-layer spaces,rather than inter-layer spaces that are observed in A_(2)B-type 2D electrides,e.g.Ca_(2)N.Moreover,when hydrogen atoms are introduced into the host structures to form YClH and Y2Cl3H,the generated phases transform to conventional ionic compounds but exhibited a surprising reduction of work function,arising from the increased Fermi level energy,contrary to the conventional electrides reported so far.Y_(2C)l_(3) was experimentally confirmed to be a semiconductor with a band gap of 1.14 eV.These results may help to promote the rational design and discovery of new electride materials for further technological applications.展开更多
文摘Electrides are unique ionic compounds that electrons serve as the anions. Many electrides with fascinating physical and chemical properties have been discovered at ambient condition. Under pressure, electrides are also revealed to be ubiquitous crystal morphology, enriching the geometrical topologies and electronic properties of electrides. In this Review,we overview the formation mechanism of high-pressure electrides(HPEs) and outline a scheme for exploring new HPEs from pre-design, CALYPSO assisted structural searches, indicators for electrides, to experimental synthesis. Moreover, the evolution of electronic dimensionality under compression is also discussed to better understand the dimensional distribution of anionic electrons in HPEs.
基金This project was supported by the National Natural Science Foundation of China(NSFC)under Grants no.51201148 and U1530402the Thousand Youth Talents Plan.This work was also supported by MEXT Element Strategy Initiative and ACCEL of the Japan Science and Technology Agency in Japan.H.H.acknowledges MEXT KAKEHI(Grant no.17H06153)Stay of H.G.at Tokyo Tech was supported by WRHI program.Y.F.L.was supported by the JSPS fellowship for young scientists(No.18J00745).
文摘Developing and understanding electron-rich electrides offers a promising opportunity for a variety of electronic and catalytic applications.Using a geometrical identification strategy,here we identify a new class of electride material,yttrium/scandium chlorides Y(Sc)_(x)Cl_(y)(yx<2).Anionic electrons are found in the metal octahedral framework topology.The diverse electronic dimensionality of these electrides is quantified explicitly by quasi-two-dimensional(2D)electrides for[YCl]^(+)∙e−and[ScCl]^(+∙)e−and one-dimensional(1D)electrides for[Y_(2)Cl_(3)]^(+)∙e−,[Sc_(7)Cl_(10)]^(+)∙e−,and[Sc5Cl8]2+∙2e−with divalent metal elements(Sc^(2+):3d^(1) and Y^(2+):4d^(1)).The localized anionic electrons were confined within the inner-layer spaces,rather than inter-layer spaces that are observed in A_(2)B-type 2D electrides,e.g.Ca_(2)N.Moreover,when hydrogen atoms are introduced into the host structures to form YClH and Y2Cl3H,the generated phases transform to conventional ionic compounds but exhibited a surprising reduction of work function,arising from the increased Fermi level energy,contrary to the conventional electrides reported so far.Y_(2C)l_(3) was experimentally confirmed to be a semiconductor with a band gap of 1.14 eV.These results may help to promote the rational design and discovery of new electride materials for further technological applications.