期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells 被引量:3
1
作者 Xiaobin Gu Yanan Wei +9 位作者 Xingzheng liu Na Yu laiyang li Ziyang Han Jinhua Gao Congqi li Zhixiang Wei Zheng Tang Xin Zhang Hui Huang 《Science China Chemistry》 SCIE EI CSCD 2022年第5期926-933,共8页
The polymerization of fused-ring acceptors(FRAs) to afford their corresponding polymeric acceptors for high-performance all-polymer solar cells(all-PSCs) has achieved remarkable progress in the past few years.However,... The polymerization of fused-ring acceptors(FRAs) to afford their corresponding polymeric acceptors for high-performance all-polymer solar cells(all-PSCs) has achieved remarkable progress in the past few years.However,due to the high degree of synthetic complexity for the monomer,the high-cost of these polymeric acceptors may limit their commercial applications.Thus,it is urgent to develop inexpensive and high-performance polymeric acceptors for all-PSCs.Herein,two novel polymeric acceptors(PBTzO and PBTzO-2F) have been designed and synthesized by copolymerization of noncovalently fused ring acceptors(NFRAs),which were employed in all-PSCs for the first time.Upon introducing the “noncovalently conformational locks(NoCLs)” in the backbone and selective fluorination of the end-group,photophysical and electrical properties,and solidstate packing properties of the NFRAs have been rationally tuned.As a result,the PBDB-T:PBTzO-2F based devices presented an excellent power conversion efficiency(PCE) of 11.04%,much higher than that of PBTzO based ones due to the increased charge generation and extraction,improved hole transfer and carrier mobilities,and reduced energy loss.More importantly,PBTzO-2F exhibited a much lower synthetic complexity(SC) index and higher figure-of-merit(FOM) values than the high-performance fused-ring acceptor based polymer acceptors(FRA-PAs) due to the simpler structures and more effective synthesis.This contribution provided a novel idea to achieve low-cost and high-performance all-PSCs. 展开更多
关键词 all-polymer solar cells low-cost polymer acceptors noncovalently fused-ring backbones figure-of-merit values
原文传递
Non-contact biomimetic mechanism for selective hydrogenation of nitroaromatics on heterogeneous metal nanocatalysts
2
作者 Wenting Zhou laiyang li +9 位作者 Ruixuan Qin Jiaxin Zhu Shengjie liu Shiguang Mo Zaifa Shi Huihuang Fang Pengpeng Ruan Jun Cheng Gang Fu Nanfeng Zheng 《Science China Chemistry》 SCIE EI CSCD 2022年第4期726-732,共7页
While the enzymatic reduction of unsaturated compounds usually has high specificity,highly selective reduction processes are hardly realized by heterogeneous industrial catalysts,which is critical for the green produc... While the enzymatic reduction of unsaturated compounds usually has high specificity,highly selective reduction processes are hardly realized by heterogeneous industrial catalysts,which is critical for the green production of many fine chemicals.Here,we report an unexpected discovery of a biomimetic behavior of dicyandiamide(DICY)-modified Pt nanocatalysts for the green hydrogenation of a wide range of nitroaromatics.We demonstrate that the surface modification by DICY not only prevents the direct contact of nitroaromatic reactants with Pt surface but also induces an effective non-contact hydrogenation mechanism mediated by protons and electrons.In such a process,the DICY layer serves as a“semi-permeable membrane”to allow the permeation of H_(2) molecules for being activated into electrons and protons at the Pt-DICY interface.With the generation of separated protons and electrons,the nitro group with strong electrophilic properties can be hydrogenated through the electron transfer followed by the proton transfer,which is facilitated by the hydrogen bonding network formed by protonated DICY.The unique mechanism makes it highly directional toward the hydrogenation of nitro groups without side reactions.Owing to its capability to largely eliminate the waste generation,the developed Pt-DICY catalysts have been successfully applied for the green industrial production of many important aniline intermediates. 展开更多
关键词 hydrogenation catalysis NITROAROMATICS proton/electron separation non-contact hydrogenation biomimetic mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部