期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Explainable Classification Model for Android Malware Analysis Using API and Permission-Based Features
1
作者 Nida Aslam Irfan Ullah Khan +5 位作者 Salma Abdulrahman Bader Aisha Alansari lama abdullah alaqeel Razan Mohammed Khormy Zahra Abdultawab AlKubaish Tariq Hussain 《Computers, Materials & Continua》 SCIE EI 2023年第9期3167-3188,共22页
One of the most widely used smartphone operating systems,Android,is vulnerable to cutting-edge malware that employs sophisticated logic.Such malware attacks could lead to the execution of unauthorized acts on the vict... One of the most widely used smartphone operating systems,Android,is vulnerable to cutting-edge malware that employs sophisticated logic.Such malware attacks could lead to the execution of unauthorized acts on the victims’devices,stealing personal information and causing hardware damage.In previous studies,machine learning(ML)has shown its efficacy in detecting malware events and classifying their types.However,attackers are continuously developing more sophisticated methods to bypass detection.Therefore,up-to-date datasets must be utilized to implement proactive models for detecting malware events in Android mobile devices.Therefore,this study employed ML algorithms to classify Android applications into malware or goodware using permission and application programming interface(API)-based features from a recent dataset.To overcome the dataset imbalance issue,RandomOverSampler,synthetic minority oversampling with tomek links(SMOTETomek),and RandomUnderSampler were applied to the Dataset in different experiments.The results indicated that the extra tree(ET)classifier achieved the highest accuracy of 99.53%within an elapsed time of 0.0198 s in the experiment that utilized the RandomOverSampler technique.Furthermore,the explainable Artificial Intelligence(EAI)technique has been applied to add transparency to the high-performance ET classifier.The global explanation using the Shapely values indicated that the top three features contributing to the goodware class are:Ljava/net/URL;->openConnection,Landroid/location/LocationManager;->getLastKgoodwarewnLocation,and Vibrate.On the other hand,the top three features contributing to themalware class are Receive_Boot_Completed,Get_Tasks,and Kill_Background_Processes.It is believed that the proposedmodel can contribute to proactively detectingmalware events in Android devices to reduce the number of victims and increase users’trust. 展开更多
关键词 Android malware machine learning malware detection explainable artificial intelligence cyber security
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部