Surface functionalization of magnesium(Mg)alloys is desired to obtain the surfaces with both improved corrosion resistance and antibacterial property.A corrosion-resistant and antimicrobial coating was prepared on Mg ...Surface functionalization of magnesium(Mg)alloys is desired to obtain the surfaces with both improved corrosion resistance and antibacterial property.A corrosion-resistant and antimicrobial coating was prepared on Mg alloy surface by layer-by-layer(LbL)assembly of chitosan(CHI)and poly-L-glutamic acid(PGA)by electrostatic attraction.The functionalized surfaces of the Mg alloys were characterized by field-emission scanning electron microscopy(FE-SEM),Fourier transform infrared(FT-IR)spectroscopy and electrochemical tests.The bactericidal activity of the samples against Staphylococcus aureus was assessed by the zone of plate-counting method.The obtained coating on the Mg alloy substrates exhibits good corrosion resistance and antibacterial performance.展开更多
A chitosan/deoxyribonucleic acid(CHI/DNA)_(5)coating was constructed by layer-by-layer(LbL)assembly dip coating method with Mg(OH)_(2)coating as an inner protective layer on AZ31 alloy.X-ray diffractometry,X-ray photo...A chitosan/deoxyribonucleic acid(CHI/DNA)_(5)coating was constructed by layer-by-layer(LbL)assembly dip coating method with Mg(OH)_(2)coating as an inner protective layer on AZ31 alloy.X-ray diffractometry,X-ray photoelectron spectrometry,Fourier transform infrared spectroscopy and field-emission scanning electron microscopy were utilized to represent the chemical compositions and surface morphologies of the coatings.Electrochemical tests and hydrogen evolution measurements were implemented to confirm the good corrosion resistance of the composite coating in artificial body fluid.Antimicrobial activity of the composite coatings was tested via the plate-counting method,and the cytotoxicity of the samples was appraised by MTT assay and Live/dead staining.A double action was put into effect for the composite coating,which the inner Mg(OH)2 coating plays the part of physical barrier,and the outer(CHI/DNA)5 coating is employed as an inducer to fabricate a biocompatible Ca-P corrosion product coating during immersion,making up for its thin thickness.Otherwise,the composite coating is also beneficial for the growth of bone,resulting from the biomineralization effect of the outer polyelectrolyte multilayer.The good antibacterial property of the(CHI/DNA)5/Mg(OH)2 coating is ascribed to the contact-killing strength of CHI.Thus,the obtained(CHI/DNA)5/Mg(OH)2 coating has a wide application prospect in the field of Mg-based bone implantation.展开更多
Mg alloys possess biodegradability,suitable mechanical properties,and biocompatibility,which make them possible to be used as biodegradable implants.However,the uncontrollable degradation of Mg alloys limits their gen...Mg alloys possess biodegradability,suitable mechanical properties,and biocompatibility,which make them possible to be used as biodegradable implants.However,the uncontrollable degradation of Mg alloys limits their general applications.In addition to the factors from the metallic materials themselves,like alloy compositions,heat treatment process and microstructure,some external factors,relating to the test/service environment,also affect the degradation rate of Mg alloys,such as inorganic salts,bioorganic small molecules,bioorganic macromolecules.The influence of bioorganic molecules on Mg corrosion and its protection has attracted more and more attentions.In this work,the cutting-edge advances in the influence of bioorganic molecules(i.e.,protein,glucose,amino acids,vitamins and polypeptide)and their coupling effect on Mg degradation and the formation of protection coatings were reviewed.The research orientations of biomedical Mg alloys in exploring degradation mechanisms in vitro were proposed,and the impact of bioorganic molecules on the protective approaches were also explored.展开更多
The influence of intermetallic Al-Mn particles on the corrosion behavior of in-situ formed Mg-Al layered double hydroxide(Mg-Al-CO32--LDH)steam coating on AZ31 Mg alloy was investigated.The alloy was pretreated with H...The influence of intermetallic Al-Mn particles on the corrosion behavior of in-situ formed Mg-Al layered double hydroxide(Mg-Al-CO32--LDH)steam coating on AZ31 Mg alloy was investigated.The alloy was pretreated with H3PO4,HCl,HNO3or citric acid(CA),followed by hydrothermal treatment,for the fabrication of Mg-Al-LDH coating.The microstructure,composition and corrosion resistance of the coated samples were investigated.The results showed that the surface area fraction of Al-Mn phase exposed on the surface of the alloy was significantly increased after CA pretreatment,which promotes the growth of the Mg-Al-LDH steam coating.Further,the LDH-coated alloy pretreated with CA possessed the most compact surface and the maximum coating thickness among all the coatings.The corrosion current density of the coated alloy was decreased by three orders of magnitude as compared to that of the bare alloy.展开更多
In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ...In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy.展开更多
A Schiff base(a compound containing a C=N bond)induced anodic Ca−P coating was prepared on AZ31 Mg alloy in a mixed solution of CaCl_(2) and KH_(2)PO_(4) at 60℃ in the presence of glucose and L-cysteine.The microstru...A Schiff base(a compound containing a C=N bond)induced anodic Ca−P coating was prepared on AZ31 Mg alloy in a mixed solution of CaCl_(2) and KH_(2)PO_(4) at 60℃ in the presence of glucose and L-cysteine.The microstructure and chemical composition of the coatings were characterized using FE-SEM,FT-IR,XRD,and XPS.The in vitro degradation resistance of the coated samples was evaluated via potentiodynamic polarization(PDP),electrochemical impedance spectroscopy(EIS),and hydrogen evolution test.The experimental results show that the Ca−PSchiff base coating is composed of CaHPO_(4)(DCPA)and hydroxyapatite(HA),whereas HA is not present in the Ca−P coating.The Ca−P_(Schiff base) coating thickness is about 2 times that of Ca−P coating(Ca−P coating:(9.13±4.20)μm and Ca−P_(Schiff base):(18.13±5.78)μm).The corrosion current density of the Ca−P_(Schiff base) coating is two orders of magnitude lower than that of the Ca−P coating.The formation mechanism of the Ca−P_(Schiff base) is proposed.展开更多
Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategi...Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategically incorporated in the MAO micropores and in the top EP layer. The influence of the strategic positioning of the nanocontainers on the corrosion protective performance of coating was investigated. The experimental results and analysis indicated that the superior corrosion resistance of the hybrid coating is ascribed to the protection mechanisms of the nanocontainers. This involves two phenomena:(1) the presence of the nanocontainers in the MAO micropores decreased the distance between MSN@SB and the substrate, demonstrating a low admittance value(^5.18 × 10^(-8)Ω^(-1)), and thus exhibiting significant corrosion inhibition and self-healing function;and(2) the addition of nanocontainers in the top EP layer densified the coating via sealing of the inherent defects, and hence the coating maintained higher resistance even after 90 days of immersion(1.13 × 10^(10)Ω cm^(2)).However, the possibility of corrosion inhibitors located away from the substrate transport to the substrate is reduced, reducing its effective utilization rate. This work demonstrates the importance of the positioning of nanocontainers in the coating for enhanced corrosion resistance,and thereby providing a novel perspective for the design of smart protective coatings through regulating the distribution of nanocontainers in the coatings.展开更多
One of the major obstacles for the clinical use of biodegradable magnesium(Mg)-based materials is their high corrosion rate. Micro-arc oxidation(MAO) coatings on Mg alloys provide mild corrosion protection owing to th...One of the major obstacles for the clinical use of biodegradable magnesium(Mg)-based materials is their high corrosion rate. Micro-arc oxidation(MAO) coatings on Mg alloys provide mild corrosion protection owing to their porous structure. Hence, in this study a dense Mg(OH)2 film was fabricated on MAO-coated Mg alloy AZ31 in an alkaline electrolyte containing ethylenediamine tetraacetic acid disodium(EDTA-2 Na) to reinforce the protection. Surface morphology, chemical composition and growth process of the MAO/Mg(OH)2 hybrid coating were examined using field-emission scanning electron microscopy, energy dispersive X-ray spectrometer, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectrophotometer. Corrosion resistance of the coatings was evaluated via potentiodynamic polarization curves and hydrogen evolution tests. Results manifested that the Mg(OH)2 coating possesses a porous nano-sized structure and completely seals the micro-pores and micro-cracks of the MAO coating.The intermetallic compound of AlMn phase in the substrate plays a key role in the growth of Mg(OH)2 film. The current density of Mg(OH)2-MAO composite coating decreases three orders of magnitude in comparison with that of bare substrate, indicating excellent corrosion resistance. The Mg(OH)2-MAO composite coating is beneficial to the formation of calcium phosphate corrosion products on the surface of Mg alloy AZ31, demonstrating a great promise for orthopaedic applications.展开更多
Magnesium(Mg)alloys as a bioabsorbable light metal have shown great clinical potential as bone replacement implants.In this review,the categories,progress in cutting-edge preparation technologies and antibacterial mec...Magnesium(Mg)alloys as a bioabsorbable light metal have shown great clinical potential as bone replacement implants.In this review,the categories,progress in cutting-edge preparation technologies and antibacterial mechanisms of Mg alloys and considerable numbers of corrosion-resistant and functional coatings are summarized.The relationship among the microstructure(grain size,intermetallic compounds),biocorrosion resistance and biocompatibility for antibacterial Mg alloys is discussed.The challenge and outlooks of biomedical Mg alloys and coatings are proposed from an antibacterial perspective.展开更多
A SnO_2-doped calcium phosphate(Ca-P-Sn) coating was constructed on Mg-1 Li-1 Ca alloy by a hydrothermal process. The fabricated functional coatings were investigated using scanning electron microscopy(SEM), X-ray dif...A SnO_2-doped calcium phosphate(Ca-P-Sn) coating was constructed on Mg-1 Li-1 Ca alloy by a hydrothermal process. The fabricated functional coatings were investigated using scanning electron microscopy(SEM), X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR). A triple-layered structure, which is composed of Ca_3(PO_4)_2,(Ca, Mg)_3(PO_4)_2, SnO_2, and MgHPO_4·3 H_2O, is evident and leads to the formation of Ca_(10)(PO_4)_6(OH)_2 in Hank's solution. Electrochemical measurements, hydrogen evolution tests and plating counts reveal that the corrosion resistance and antibacterial activity were improved through the coating treatment. The embedded SnO_2 nanoparticles enhanced crystallisation of the coating.The formation and degradation mechanisms of the coating were discussed.展开更多
Exfoliation on as-extruded Mg-1 Li-1 Ca magnesium alloy was investigated after an immersion in 3.5 wt%NaCl aqueous solution for 90, 120 and 150 days through optical microscope, digital camera, scanning electron micros...Exfoliation on as-extruded Mg-1 Li-1 Ca magnesium alloy was investigated after an immersion in 3.5 wt%NaCl aqueous solution for 90, 120 and 150 days through optical microscope, digital camera, scanning electron microscope, electrochemical workstation, scanning Kalvin probe, X-ray diffraction and Fourier transform infrared spectroscope. The results demonstrated that exfoliation corrosion occurred on extruded Mg-1 Li-1 Ca alloy due to elongated microstructure parallel to surface, and delamination of lamellar structure resulted from galvanic effect and wedge effect. Skin layer with fine grains exhibited better corrosion resistance, whereas the interior with coarse grains and the intermetallic compound,Mg2 Ca particles existing in a fibrous structure, dispersed along grain boundaries and extrusion direction in a line. Furthermore, galvanic effect between Mg2 Ca particles and their neighboring a-Mg matrix facilitated dissolution of Mg2 Ca particles and a-Mg matrix; wedge effect was caused by formation of corrosion products. Exfoliation corrosion of extruded Mg-Li-Ca alloys might be a synergic effect of pitting corrosion,filiform corrosion, intergranular corrosion and stress corrosion. Finally, exfoliation corrosion mechanism was proposed.展开更多
In vitro degradation is an important approach to screening appropriate biomedical magnesium(Mg) alloys at low cost. However, corrosion products deposited on Mg alloys exert a critical impact on corrosion resistance....In vitro degradation is an important approach to screening appropriate biomedical magnesium(Mg) alloys at low cost. However, corrosion products deposited on Mg alloys exert a critical impact on corrosion resistance. There are no acceptable criteria on the evaluation on degradation rate of Mg alloys. Understanding the degradation behavior of Mg alloys in presence of Tris buffer is necessary. An investigation was made to compare the influence of Tris-HCl and Tris on the corrosion behavior of Mg alloy AZ31 in the presence of various anions of simulated body fluids via hydrogen evolution, p H value and electrochemical tests.The results demonstrated that the Tris-HCl buffer resulted in general corrosion due to the inhibition of the formation of corrosion products and thus increased the corrosion rate of the AZ31 alloy. Whereas Tris gave rise to pitting corrosion or general corrosion due to the fact that the hydrolysis of the amino-group of Tris led to an increase in solution p H value, and promoted the formation of corrosion products and thus a significant reduction in corrosion rate. In addition, the corrosion mechanisms in the presence of Tris-HCl and Tris were proposed. Tris-HCl as a buffer prevented the formation of precipitates of HCO;, SO;,HPO;and H;PO;ions during the corrosion of the AZ31 alloy due to its lower buffering p H value(x.x).Thus, both the hydrogen evolution rate and corrosion current density of the alloy were approximately one order of magnitude higher in presence of Tris-HCl than Tris and Tris-free saline solutions.展开更多
Biocompatible polyelectrolyte multilayers (PEMs) and polysiloxane hybrid coatings were prepared to improve the corrosion resistance of biodegradable Mg alloy AZ31. The PEMs, which contained alternating poly(sodium ...Biocompatible polyelectrolyte multilayers (PEMs) and polysiloxane hybrid coatings were prepared to improve the corrosion resistance of biodegradable Mg alloy AZ31. The PEMs, which contained alternating poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH), were first self-assembled on the surface of the AZ31 alloy substrate via electrostatic interactions, designated as (PAH/PSS)s/AZ31. Then, the (PAH/PSS)5/AZ31 samples were dipped into a methyltrimethoxysilane (MTMS) solution to fabricate the PMTMS films, designated as PMTMS/(PAH/PSS)5/AZ31. The surface morphologies, microstructures and chemical compositions of the films were investigated by FE-SEM, FTIR, XRD and XPS. Potentiodynamic polarization, electro- chemical impedance spectroscopy and hydrogen evolution measurements demonstrated that the PMTMS/(PAH/PSS)s/AZ31 composite film significantly enhanced the corrosion resistance of the AZ31 alloy in Hank's balanced salt solution (HBSS). The PAH and PSS films effectively improved the deposition of Ca-P compounds including Ca3(PO4)2 and hydroxyapatite (HA). Moreover, the corrosion mechanism of the composite coating was discussed. These coatings could be an alternative candidate coating for biodegradable Mg alloys.展开更多
A superhydrophobic surface was successfully constructed to modify the layered double hydroxide (LDH) coatings on aluminum alloy using stearic acid. The characteristics of the coatings were investigated using SEM, XR...A superhydrophobic surface was successfully constructed to modify the layered double hydroxide (LDH) coatings on aluminum alloy using stearic acid. The characteristics of the coatings were investigated using SEM, XRD, FT- IR and XPS. The corrosion resistance of the prepared coatings was studied using potentiodynamic polarization and electrochemical impedance spectrum. The results revealed that the superhydrophobic surface considerably improved the corrosion-resistant performance of the LDH coatings on the aluminum alloy substrate. The formation mechanism of the superhydrophobic surface was proposed.展开更多
The microstructure and chemical compositions of the solid solution-treated Mg-3 Nd-1 Li-0.2 Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),...The microstructure and chemical compositions of the solid solution-treated Mg-3 Nd-1 Li-0.2 Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),electron probe micro-analyzer(EPMA)and X-ray photoelectron spectroscopy(XPS).The corrosion behaviour of the alloy was investigated via electrochemical polarization,electrochemical impedance spectroscopy(EIS),hydrogen evolution test and scanning Kelvin probe(SKP).The results showed that the microstructure of the as-extruded Mg-3 Nd-1 Li-0.2 Zn alloy containedα-Mg matrix and nanometric second phase Mg_(41)Nd_(5).The grain size of the alloy increased significantly with the increase in the heat-treatment duration,whereas the volume fraction of the second phase decreased after the solid solution treatment.The surface film was composed of oxides(Nd_(2)O_(3),Mg O,Li_(2)O and Zn O)and carbonates(Mg CO3 and Li_(2)CO3),in addition to Nd.The as-extruded alloy exhibited the best corrosion resistance after an initial soaking of 10 min,whereas the alloy with 4 h-solution-treatment possessed the lowest corrosion rate after a longer immersion(1 h).This can be attributed to the formation of Nd-containing oxide film on the alloys and a dense corrosion product layer.The dealloying corrosion of the second phase was related to the anodic Mg_(41)Nd_(5)with a more negative Volta potential relative toα-Mg phase.The preferential corrosion of Mg_(41)Nd_(5)is proven by in-situ observation and SEM.The solid solution treatment of Mg-3 Nd-1 Li-0.2 Zn alloy led to a shift in corrosion type from pitting corrosion to uniform corrosion under long-term exposure.展开更多
Biodegradable magnesium(Mg)-based alloys have aroused great concern owing to their promising characteristics as temporary implants for orthopedic application.But their undesirably rapid corrosion rate under physiologi...Biodegradable magnesium(Mg)-based alloys have aroused great concern owing to their promising characteristics as temporary implants for orthopedic application.But their undesirably rapid corrosion rate under physiological conditions has limited the actual clinical application.This study reports the use of a novel biomimetic polyelectrolyte multilayer template,based on polyvinylpyrrolidone(PVP)and polyacrylic acid(PAA)via layerby-layer(LbL)assembly,to improve the corrosion resistance of the alloy.Surface characterization techniques(field-emission scanning electron microscopy,Fourier transform infrared(FTIR)spectrophotometer and X-ray diffractometer)confirmed the formation of biomineralized Ca–P coating on AZ31 alloy.Both hydrogen evolution and electrochemical corrosion tests demonstrated that the corrosion protection of the polyelectrolyte-induced Ca–P coating on AZ31 alloy.The formation mechanism of biomineralized Ca–P coating was proposed.展开更多
The biocorrosion of magnesium in the external physiological environment is still difficult to accurately evaluate the degradation behavior in vivo,particularly,in the microenvironment of the patients with hyperglycemi...The biocorrosion of magnesium in the external physiological environment is still difficult to accurately evaluate the degradation behavior in vivo,particularly,in the microenvironment of the patients with hyperglycemia or diabetes.Thus,we explored the synergistic effects of glucose and protein on the biodegradation of pure magnesium,so as to have a deeper understanding the mechanism of the degradation in vivo.The surface morphology and corrosion product composition of pure magnesium were investigated using SEM,EDS,FTIR,XRD and XPS.The effect of glucose and albumin on the degradation rate of pure magnesium was investigated via electrochemical and immersion tests.The adsorption of glucose and albumin on the sample surface was observed using fluorescence microscopy.The results showed that the presence of 2 g/L glucose changed the micromorphology of corrosion products on the magnesium surface by reacting with metal cations,thus inhibiting the corrosion of pure magnesium.Protein formed a barrier layer to protect the magnesium at early stage of immersion.The chelation reaction between protein and magnesium surface might accelerate the degradation at later stage.There may be a critical glucose(albumin)content.Biodegradation of pure magnesium was inhibited at low concentrations and promoted at high concentrations.The synergistic effect of glucose and protein restrained the adsorption of aggressive chloride ions to a certain extent,and thus inhibited the degradation of pure magnesium considerably.Moreover,XPS results indicated that glucose promoted the adsorption of protein on the sample surface.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51601108,52071191)the Natural Science Foundation of Shandong Province,China (No.ZR2020ME011).
基金the financial support of the National Natural Science Foundation of China (Nos. 52071191, 52201077)the Natural Science Foundation of Shandong Province, China (No. ZR2022QE191)Talent Introduction and Research Start-up Fund of Shandong University of Science and Technology, China (No. 0104060510124)。
基金Projects(51571134,51601108)supported by the National Natural Science Foundation of ChinaProject(2013RCJJ006)supported by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents,China+1 种基金Project(2016ZRB01A62)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2014TDJH104)supported by Shandong University of Science and Technology Research Fund,China
文摘Surface functionalization of magnesium(Mg)alloys is desired to obtain the surfaces with both improved corrosion resistance and antibacterial property.A corrosion-resistant and antimicrobial coating was prepared on Mg alloy surface by layer-by-layer(LbL)assembly of chitosan(CHI)and poly-L-glutamic acid(PGA)by electrostatic attraction.The functionalized surfaces of the Mg alloys were characterized by field-emission scanning electron microscopy(FE-SEM),Fourier transform infrared(FT-IR)spectroscopy and electrochemical tests.The bactericidal activity of the samples against Staphylococcus aureus was assessed by the zone of plate-counting method.The obtained coating on the Mg alloy substrates exhibits good corrosion resistance and antibacterial performance.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51571134 )the SDUST Re- search Fund ( 2014TDJH104 )the Science and Technol- ogy Innovation Fund of SDUST for graduate students ( SD- KDYC180371 ).
基金This work was supported by the National Natural Sci-ence Foundation of China(51571134)Shandong Provincial Natural Science Foundation(ZR2017BEM002)Shan-dong University of Science and Technology Research Fund(2014TDJH104).
文摘A chitosan/deoxyribonucleic acid(CHI/DNA)_(5)coating was constructed by layer-by-layer(LbL)assembly dip coating method with Mg(OH)_(2)coating as an inner protective layer on AZ31 alloy.X-ray diffractometry,X-ray photoelectron spectrometry,Fourier transform infrared spectroscopy and field-emission scanning electron microscopy were utilized to represent the chemical compositions and surface morphologies of the coatings.Electrochemical tests and hydrogen evolution measurements were implemented to confirm the good corrosion resistance of the composite coating in artificial body fluid.Antimicrobial activity of the composite coatings was tested via the plate-counting method,and the cytotoxicity of the samples was appraised by MTT assay and Live/dead staining.A double action was put into effect for the composite coating,which the inner Mg(OH)2 coating plays the part of physical barrier,and the outer(CHI/DNA)5 coating is employed as an inducer to fabricate a biocompatible Ca-P corrosion product coating during immersion,making up for its thin thickness.Otherwise,the composite coating is also beneficial for the growth of bone,resulting from the biomineralization effect of the outer polyelectrolyte multilayer.The good antibacterial property of the(CHI/DNA)5/Mg(OH)2 coating is ascribed to the contact-killing strength of CHI.Thus,the obtained(CHI/DNA)5/Mg(OH)2 coating has a wide application prospect in the field of Mg-based bone implantation.
基金National Natural Science Foundation of China(Grant No.52071191)Open Foundation of Hubei Key Laboratory of Advanced Technology for Automotive Components(No.XDQCKF2021006)。
文摘Mg alloys possess biodegradability,suitable mechanical properties,and biocompatibility,which make them possible to be used as biodegradable implants.However,the uncontrollable degradation of Mg alloys limits their general applications.In addition to the factors from the metallic materials themselves,like alloy compositions,heat treatment process and microstructure,some external factors,relating to the test/service environment,also affect the degradation rate of Mg alloys,such as inorganic salts,bioorganic small molecules,bioorganic macromolecules.The influence of bioorganic molecules on Mg corrosion and its protection has attracted more and more attentions.In this work,the cutting-edge advances in the influence of bioorganic molecules(i.e.,protein,glucose,amino acids,vitamins and polypeptide)and their coupling effect on Mg degradation and the formation of protection coatings were reviewed.The research orientations of biomedical Mg alloys in exploring degradation mechanisms in vitro were proposed,and the impact of bioorganic molecules on the protective approaches were also explored.
基金supported by the National Natural Science Foundation of China(Nos.51601108 and 52071191)the Natural Science Foundation of Shandong Province,China(No.ZR2020ME011)。
文摘The influence of intermetallic Al-Mn particles on the corrosion behavior of in-situ formed Mg-Al layered double hydroxide(Mg-Al-CO32--LDH)steam coating on AZ31 Mg alloy was investigated.The alloy was pretreated with H3PO4,HCl,HNO3or citric acid(CA),followed by hydrothermal treatment,for the fabrication of Mg-Al-LDH coating.The microstructure,composition and corrosion resistance of the coated samples were investigated.The results showed that the surface area fraction of Al-Mn phase exposed on the surface of the alloy was significantly increased after CA pretreatment,which promotes the growth of the Mg-Al-LDH steam coating.Further,the LDH-coated alloy pretreated with CA possessed the most compact surface and the maximum coating thickness among all the coatings.The corrosion current density of the coated alloy was decreased by three orders of magnitude as compared to that of the bare alloy.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51601108 and 52071191)the Natural Science Foundation of Shandong Province(ZR2020ME011).
文摘In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy.
基金supported by the National Natural Science Foundation of China(No.52071191)the Open Foundation of Hubei Key Laboratory of Advanced Technology for Automotive Components,China(No.XDQCKF2021006)。
文摘A Schiff base(a compound containing a C=N bond)induced anodic Ca−P coating was prepared on AZ31 Mg alloy in a mixed solution of CaCl_(2) and KH_(2)PO_(4) at 60℃ in the presence of glucose and L-cysteine.The microstructure and chemical composition of the coatings were characterized using FE-SEM,FT-IR,XRD,and XPS.The in vitro degradation resistance of the coated samples was evaluated via potentiodynamic polarization(PDP),electrochemical impedance spectroscopy(EIS),and hydrogen evolution test.The experimental results show that the Ca−PSchiff base coating is composed of CaHPO_(4)(DCPA)and hydroxyapatite(HA),whereas HA is not present in the Ca−P coating.The Ca−P_(Schiff base) coating thickness is about 2 times that of Ca−P coating(Ca−P coating:(9.13±4.20)μm and Ca−P_(Schiff base):(18.13±5.78)μm).The corrosion current density of the Ca−P_(Schiff base) coating is two orders of magnitude lower than that of the Ca−P coating.The formation mechanism of the Ca−P_(Schiff base) is proposed.
基金appreciate the financial support by the National Natural Science Foundation of China (52071191,52201077)the Natural Science Foundation of Shandong Province (ZR2022QE191)+1 种基金Elite Scheme of Shandong University of Science and Technology (0104060541123)Talent introduction and Research Start-up Fund of Shandong University of Science and Technology (0104060510124)。
文摘Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategically incorporated in the MAO micropores and in the top EP layer. The influence of the strategic positioning of the nanocontainers on the corrosion protective performance of coating was investigated. The experimental results and analysis indicated that the superior corrosion resistance of the hybrid coating is ascribed to the protection mechanisms of the nanocontainers. This involves two phenomena:(1) the presence of the nanocontainers in the MAO micropores decreased the distance between MSN@SB and the substrate, demonstrating a low admittance value(^5.18 × 10^(-8)Ω^(-1)), and thus exhibiting significant corrosion inhibition and self-healing function;and(2) the addition of nanocontainers in the top EP layer densified the coating via sealing of the inherent defects, and hence the coating maintained higher resistance even after 90 days of immersion(1.13 × 10^(10)Ω cm^(2)).However, the possibility of corrosion inhibitors located away from the substrate transport to the substrate is reduced, reducing its effective utilization rate. This work demonstrates the importance of the positioning of nanocontainers in the coating for enhanced corrosion resistance,and thereby providing a novel perspective for the design of smart protective coatings through regulating the distribution of nanocontainers in the coatings.
基金supported by the National Natural Science Foundation of China(Nos.51571134 and 51601108)the SDUST Research Fund(No.2014TDJH104)
文摘One of the major obstacles for the clinical use of biodegradable magnesium(Mg)-based materials is their high corrosion rate. Micro-arc oxidation(MAO) coatings on Mg alloys provide mild corrosion protection owing to their porous structure. Hence, in this study a dense Mg(OH)2 film was fabricated on MAO-coated Mg alloy AZ31 in an alkaline electrolyte containing ethylenediamine tetraacetic acid disodium(EDTA-2 Na) to reinforce the protection. Surface morphology, chemical composition and growth process of the MAO/Mg(OH)2 hybrid coating were examined using field-emission scanning electron microscopy, energy dispersive X-ray spectrometer, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectrophotometer. Corrosion resistance of the coatings was evaluated via potentiodynamic polarization curves and hydrogen evolution tests. Results manifested that the Mg(OH)2 coating possesses a porous nano-sized structure and completely seals the micro-pores and micro-cracks of the MAO coating.The intermetallic compound of AlMn phase in the substrate plays a key role in the growth of Mg(OH)2 film. The current density of Mg(OH)2-MAO composite coating decreases three orders of magnitude in comparison with that of bare substrate, indicating excellent corrosion resistance. The Mg(OH)2-MAO composite coating is beneficial to the formation of calcium phosphate corrosion products on the surface of Mg alloy AZ31, demonstrating a great promise for orthopaedic applications.
基金supported by the National Natural Science Foundation of China(No.51571134)the Shandong University of Science and Technology Research Fund(No.2014TDJH104)
文摘Magnesium(Mg)alloys as a bioabsorbable light metal have shown great clinical potential as bone replacement implants.In this review,the categories,progress in cutting-edge preparation technologies and antibacterial mechanisms of Mg alloys and considerable numbers of corrosion-resistant and functional coatings are summarized.The relationship among the microstructure(grain size,intermetallic compounds),biocorrosion resistance and biocompatibility for antibacterial Mg alloys is discussed.The challenge and outlooks of biomedical Mg alloys and coatings are proposed from an antibacterial perspective.
基金supported by the National Natural Science Foundation of China (51571134)the Research Fund of Shandong University of Science and Technology (2014TDJH104)
文摘A SnO_2-doped calcium phosphate(Ca-P-Sn) coating was constructed on Mg-1 Li-1 Ca alloy by a hydrothermal process. The fabricated functional coatings were investigated using scanning electron microscopy(SEM), X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR). A triple-layered structure, which is composed of Ca_3(PO_4)_2,(Ca, Mg)_3(PO_4)_2, SnO_2, and MgHPO_4·3 H_2O, is evident and leads to the formation of Ca_(10)(PO_4)_6(OH)_2 in Hank's solution. Electrochemical measurements, hydrogen evolution tests and plating counts reveal that the corrosion resistance and antibacterial activity were improved through the coating treatment. The embedded SnO_2 nanoparticles enhanced crystallisation of the coating.The formation and degradation mechanisms of the coating were discussed.
基金supported by the National Natural Science Foundation of China (No. 51571134)the SDUST Research Fund (No. 2014TDJH104)
文摘Exfoliation on as-extruded Mg-1 Li-1 Ca magnesium alloy was investigated after an immersion in 3.5 wt%NaCl aqueous solution for 90, 120 and 150 days through optical microscope, digital camera, scanning electron microscope, electrochemical workstation, scanning Kalvin probe, X-ray diffraction and Fourier transform infrared spectroscope. The results demonstrated that exfoliation corrosion occurred on extruded Mg-1 Li-1 Ca alloy due to elongated microstructure parallel to surface, and delamination of lamellar structure resulted from galvanic effect and wedge effect. Skin layer with fine grains exhibited better corrosion resistance, whereas the interior with coarse grains and the intermetallic compound,Mg2 Ca particles existing in a fibrous structure, dispersed along grain boundaries and extrusion direction in a line. Furthermore, galvanic effect between Mg2 Ca particles and their neighboring a-Mg matrix facilitated dissolution of Mg2 Ca particles and a-Mg matrix; wedge effect was caused by formation of corrosion products. Exfoliation corrosion of extruded Mg-Li-Ca alloys might be a synergic effect of pitting corrosion,filiform corrosion, intergranular corrosion and stress corrosion. Finally, exfoliation corrosion mechanism was proposed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51241001 and 51571134)SDUST Research Fund (No. 2014TDJH104)
文摘In vitro degradation is an important approach to screening appropriate biomedical magnesium(Mg) alloys at low cost. However, corrosion products deposited on Mg alloys exert a critical impact on corrosion resistance. There are no acceptable criteria on the evaluation on degradation rate of Mg alloys. Understanding the degradation behavior of Mg alloys in presence of Tris buffer is necessary. An investigation was made to compare the influence of Tris-HCl and Tris on the corrosion behavior of Mg alloy AZ31 in the presence of various anions of simulated body fluids via hydrogen evolution, p H value and electrochemical tests.The results demonstrated that the Tris-HCl buffer resulted in general corrosion due to the inhibition of the formation of corrosion products and thus increased the corrosion rate of the AZ31 alloy. Whereas Tris gave rise to pitting corrosion or general corrosion due to the fact that the hydrolysis of the amino-group of Tris led to an increase in solution p H value, and promoted the formation of corrosion products and thus a significant reduction in corrosion rate. In addition, the corrosion mechanisms in the presence of Tris-HCl and Tris were proposed. Tris-HCl as a buffer prevented the formation of precipitates of HCO;, SO;,HPO;and H;PO;ions during the corrosion of the AZ31 alloy due to its lower buffering p H value(x.x).Thus, both the hydrogen evolution rate and corrosion current density of the alloy were approximately one order of magnitude higher in presence of Tris-HCl than Tris and Tris-free saline solutions.
文摘Biocompatible polyelectrolyte multilayers (PEMs) and polysiloxane hybrid coatings were prepared to improve the corrosion resistance of biodegradable Mg alloy AZ31. The PEMs, which contained alternating poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH), were first self-assembled on the surface of the AZ31 alloy substrate via electrostatic interactions, designated as (PAH/PSS)s/AZ31. Then, the (PAH/PSS)5/AZ31 samples were dipped into a methyltrimethoxysilane (MTMS) solution to fabricate the PMTMS films, designated as PMTMS/(PAH/PSS)5/AZ31. The surface morphologies, microstructures and chemical compositions of the films were investigated by FE-SEM, FTIR, XRD and XPS. Potentiodynamic polarization, electro- chemical impedance spectroscopy and hydrogen evolution measurements demonstrated that the PMTMS/(PAH/PSS)s/AZ31 composite film significantly enhanced the corrosion resistance of the AZ31 alloy in Hank's balanced salt solution (HBSS). The PAH and PSS films effectively improved the deposition of Ca-P compounds including Ca3(PO4)2 and hydroxyapatite (HA). Moreover, the corrosion mechanism of the composite coating was discussed. These coatings could be an alternative candidate coating for biodegradable Mg alloys.
基金financially supported by the National Natural Science Foundation of China(No.21306214)the Doctoral Program Foundation of the State Education Ministry(No. 20133718120003)+2 种基金the Applied Basic Research Foundation of Qingdao(No.13-1-4-217-jch)the Scientific Research Foundation of Shandong for Outstanding Young Scientists(No.BS2013CL009)SDUST Research Fund(No.2014TDJH104)
文摘A superhydrophobic surface was successfully constructed to modify the layered double hydroxide (LDH) coatings on aluminum alloy using stearic acid. The characteristics of the coatings were investigated using SEM, XRD, FT- IR and XPS. The corrosion resistance of the prepared coatings was studied using potentiodynamic polarization and electrochemical impedance spectrum. The results revealed that the superhydrophobic surface considerably improved the corrosion-resistant performance of the LDH coatings on the aluminum alloy substrate. The formation mechanism of the superhydrophobic surface was proposed.
基金supported by the National Natural Science Foundation of China(52071191)the SDUST Research Found(2014TDJH104)。
文摘The microstructure and chemical compositions of the solid solution-treated Mg-3 Nd-1 Li-0.2 Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),electron probe micro-analyzer(EPMA)and X-ray photoelectron spectroscopy(XPS).The corrosion behaviour of the alloy was investigated via electrochemical polarization,electrochemical impedance spectroscopy(EIS),hydrogen evolution test and scanning Kelvin probe(SKP).The results showed that the microstructure of the as-extruded Mg-3 Nd-1 Li-0.2 Zn alloy containedα-Mg matrix and nanometric second phase Mg_(41)Nd_(5).The grain size of the alloy increased significantly with the increase in the heat-treatment duration,whereas the volume fraction of the second phase decreased after the solid solution treatment.The surface film was composed of oxides(Nd_(2)O_(3),Mg O,Li_(2)O and Zn O)and carbonates(Mg CO3 and Li_(2)CO3),in addition to Nd.The as-extruded alloy exhibited the best corrosion resistance after an initial soaking of 10 min,whereas the alloy with 4 h-solution-treatment possessed the lowest corrosion rate after a longer immersion(1 h).This can be attributed to the formation of Nd-containing oxide film on the alloys and a dense corrosion product layer.The dealloying corrosion of the second phase was related to the anodic Mg_(41)Nd_(5)with a more negative Volta potential relative toα-Mg phase.The preferential corrosion of Mg_(41)Nd_(5)is proven by in-situ observation and SEM.The solid solution treatment of Mg-3 Nd-1 Li-0.2 Zn alloy led to a shift in corrosion type from pitting corrosion to uniform corrosion under long-term exposure.
基金This work was supported by the National Natural Science Foundation of China(51571134)Shandong Provincial Natural Science Foundation(ZR2017BEM002)Shandong University of Science and Technology Research Fund(2014TDJH104).
文摘Biodegradable magnesium(Mg)-based alloys have aroused great concern owing to their promising characteristics as temporary implants for orthopedic application.But their undesirably rapid corrosion rate under physiological conditions has limited the actual clinical application.This study reports the use of a novel biomimetic polyelectrolyte multilayer template,based on polyvinylpyrrolidone(PVP)and polyacrylic acid(PAA)via layerby-layer(LbL)assembly,to improve the corrosion resistance of the alloy.Surface characterization techniques(field-emission scanning electron microscopy,Fourier transform infrared(FTIR)spectrophotometer and X-ray diffractometer)confirmed the formation of biomineralized Ca–P coating on AZ31 alloy.Both hydrogen evolution and electrochemical corrosion tests demonstrated that the corrosion protection of the polyelectrolyte-induced Ca–P coating on AZ31 alloy.The formation mechanism of biomineralized Ca–P coating was proposed.
基金supported by the National Natural Science Foundation of China(51571134)the Scientific Research Foundation of Shandong University of Science and Technology Research Fund(2014TDJH104)Undergraduate Innovation and Entrepreneurship Training Program of Shandong University of Science and Technology(201710424082).
文摘The biocorrosion of magnesium in the external physiological environment is still difficult to accurately evaluate the degradation behavior in vivo,particularly,in the microenvironment of the patients with hyperglycemia or diabetes.Thus,we explored the synergistic effects of glucose and protein on the biodegradation of pure magnesium,so as to have a deeper understanding the mechanism of the degradation in vivo.The surface morphology and corrosion product composition of pure magnesium were investigated using SEM,EDS,FTIR,XRD and XPS.The effect of glucose and albumin on the degradation rate of pure magnesium was investigated via electrochemical and immersion tests.The adsorption of glucose and albumin on the sample surface was observed using fluorescence microscopy.The results showed that the presence of 2 g/L glucose changed the micromorphology of corrosion products on the magnesium surface by reacting with metal cations,thus inhibiting the corrosion of pure magnesium.Protein formed a barrier layer to protect the magnesium at early stage of immersion.The chelation reaction between protein and magnesium surface might accelerate the degradation at later stage.There may be a critical glucose(albumin)content.Biodegradation of pure magnesium was inhibited at low concentrations and promoted at high concentrations.The synergistic effect of glucose and protein restrained the adsorption of aggressive chloride ions to a certain extent,and thus inhibited the degradation of pure magnesium considerably.Moreover,XPS results indicated that glucose promoted the adsorption of protein on the sample surface.