期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation 被引量:13
1
作者 Rong-lei FAN Yong WU +1 位作者 Ming-he CHEN lan-sheng xie 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期928-943,共16页
The relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation at 800℃was investigated.In the test,the original sheet exhibited relatively low flo... The relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation at 800℃was investigated.In the test,the original sheet exhibited relatively low flow stress and sound plasticity,and increasing the heat treatment temperature resulted in an increased ultimate tensile strength(UTS)and a decreased elongation(EL).The deformation mechanism of TA32 alloy was dominated by high angle grain boundaries sliding and coordinated by dislocation motion.The coarsening of grains and the annihilation of dislocations in heat-treated specimens weakened the deformation ability of material,which led to the increase in flow stress.Based on the high-temperature creep equation,the quantitative relationship between microstructure and flow stress was established.The grain size exponent andαphase strength constant of TA32 alloy were calculated to be 1.57 and 549.58 MPa,respectively.The flow stress was accurately predicted by combining with the corresponding phase volume fraction and grain size.Besides,the deformation behavior of TA32 alloy was also dependent on the orientation of predominantαphase,and the main slip mode was the activation of prismaticslip system.The decrease of near prism-oriented texture in heat-treated specimens resulted in the enhancement of strength of the material. 展开更多
关键词 TA32 titanium alloy sheets hot tensile deformation microstructure evolution mechanical properties TEXTURE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部