We deposited indium-tin-oxide(ITO)films on silicon and quartz substrates by magnetron sputtering technology in pure argon.Using electrostatic quadrupole plasma diagnostic technology,we investigate the effects of disch...We deposited indium-tin-oxide(ITO)films on silicon and quartz substrates by magnetron sputtering technology in pure argon.Using electrostatic quadrupole plasma diagnostic technology,we investigate the effects of discharge power and discharge pressure on the ion flux and energy distribution function of incidence on the substrate surface,with special attention to the production of high-energy negative oxygen ions,and elucidate the mechanism behind its production.At the same time,the structure and properties of ITO films are systematically characterized to understand the potential effects of high energy oxygen ions on the growth of ITO films.Combining with the kinetic property analysis of sputtering damage mechanism of transparent conductive oxide(TCO)thin films,this study provides valuable physical understanding of optimization of TCO thin film deposition process.展开更多
This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,att...This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,attributed to heightened plasma potential and initial emergent energy.Simultaneously,the positive ion flux escalates owing to amplified sputtering rates and electron density.Conversely,negative ions exhibit broad ion energy distribution functions(IEDFs)characterized by multiple peaks.These patterns are clarified by a combination of radiofrequency oscillation of cathode voltage and plasma potential,alongside ion transport time.This elucidation finds validation in a one-dimensional model encompassing the initial ion energy.At higher RF power,negative ions surpassing 100 e V escalate in both flux and energy,posing a potential risk of sputtering damages to ITO layers.展开更多
In this study, we found a kind of edge state located at the interface between plasma photonic crystals(PPCs) and traditional photonic crystals, which depends on the property of the photonic band gap rather than the su...In this study, we found a kind of edge state located at the interface between plasma photonic crystals(PPCs) and traditional photonic crystals, which depends on the property of the photonic band gap rather than the surface defect. Simulation and theoretical analysis show that by adjusting the plasma density, we can change the topological characteristics of the photonic band gap of PPCs. This makes it different from the photonic band gap of traditional PCs, and thus excites or closes the topological edge states. We further discussed the influence of plasma parameters on edge state characteristics, and the results showed that as the plasma density increased, the first photonic band gap(PBG) of the PPCs closed and then reopened, resulting in band inversion and a change in the PBG properties of the PPCs. We can control the generation of edge states through plasma and adjust the frequency and strength of the edge states. After the appearance of edge states, as the plasma density further increases, the first PBG of the PPCs will shift towards high frequencies and deepen. The frequency of edge states will shift towards higher frequencies, and their strength will also increase. We increased the first PBG depth of the PPCs by increasing the number of arrays and found that when the number of the PPCs arrays increased, only the intensity of the edge states would increase while the frequency remained unchanged. Therefore, flexible adjustment of edge state frequency and intensity can be achieved through plasma density and array quantity parameters. Our study demonstrates the properties of topological edge states in plasma photonic crystals, which we believe can provide some guidance for applications based on edge states.展开更多
Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts:...Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts: preliminary calculation, actual discharge experiment and calculation. The results of preliminary calculation show that a magnetic field that is too small or too large cannot produce a good power deposition effect. When the magnetic field strength is 1200 Gs,a better power deposition can be obtained. The actual discharge experiment illustrates that the change of the magnetic field will have a certain influence on the discharge phenomenon. Finally, the results of verification calculation successfully verify the accuracy of the results of preliminary simulation. The results show that in the actual discharge experiment, it can achieve the best deposition effect when the magnetic field is 1185 Gs.展开更多
In this work,the antibacterial activity of cotton containing silver nanocapsules prepared by atmospheric pressure plasma(APP)deposition is investigated.The nanocapsules consist of a shell and a silver nanoparticle(Ag ...In this work,the antibacterial activity of cotton containing silver nanocapsules prepared by atmospheric pressure plasma(APP)deposition is investigated.The nanocapsules consist of a shell and a silver nanoparticle(Ag NP)core,where the core is used to bring antibacterial activity,and the shell is utilized to suppress the potential toxicity of Ag NPs.The surface morphology and the elements of the samples are analyzed by scanning electron microscopy(SEM),energy dispersive x-ray and x-ray photoelectron spectroscopy(XPS).The SEM results show that the skin of the cotton fibers will fall off gradually after APP treatment over 3 min,and the XPS results show that the Ag content will rise to 1.6%after APP deposition for 10 min.Furthermore,the antimicrobial activity tests show that the reduction rates of Escherichia coli and Staphylococcus aureus can achieve 100%when the sample is treated for 10 min,which exhibits excellent antibacterial activity.In addition,the UV absorption properties of the cotton will also be correspondingly improved,which brings a broader application prospect for antibacterial cotton.展开更多
The direct implicit particle-in-cell is a powerful kinetic method for researching plasma characteristics.However,it is time-consuming to obtain the future electromagnetic field in such a method since the field equatio...The direct implicit particle-in-cell is a powerful kinetic method for researching plasma characteristics.However,it is time-consuming to obtain the future electromagnetic field in such a method since the field equations contain time-dependent matrix coefficients.In this work,we propose to explicitly push particles and obtain the future electromagnetic field based on the information about the particles in the future.The new method retains the form of implicit particle pusher,but the future field is obtained by solving the traditional explicit equation.Several numerical experiments,including the motion of charged particle in electromagnetic field,plasma sheath,and free diffusion of plasma into vacuum,are implemented to evaluate the performance of the method.The results demonstrate that the proposed method can suppress finite-grid-instability resulting from the coarse spatial resolution in electron Debye length through the strong damping of high-frequency plasma oscillation,while accurately describe low-frequency plasma phenomena,with the price of losing the numerical stability at large time-step.We believe that this work is helpful for people to research the bounded plasma by using particle-in-cell simulations.展开更多
In this paper, N-doped diamond-like carbon(DLC) films were deposited on silicon substrates by using helicon wave plasma chemical vapor deposition(HWP-CVD) with the Ar/CH_4/N_2 mixed gas. The surface morphology, struct...In this paper, N-doped diamond-like carbon(DLC) films were deposited on silicon substrates by using helicon wave plasma chemical vapor deposition(HWP-CVD) with the Ar/CH_4/N_2 mixed gas. The surface morphology, structural and mechanical properties of the N-doped DLC films were investigated in detail by scanning electron microscopy(SEM), x-ray photoelectron spectroscopy(XPS), Raman spectra, and atomic force microscopy(AFM). It can be observed from SEM images that surface morphology of the films become compact and uniform due to the incorporation of N. The maximum of the deposition rate of the films is 143 nm min^(-1), which is related to the high plasma density. The results of XPS show that the N incorporates in the films and the C-C sp^3 bond content increases firstly up to the maximum(20%) at 10 sccm of N_2 flow rate, and then decreases with further increase in the N_2 flow rate. The maximum Young's modulus of the films is obtained by the doping of N and reaches 80 GPa at 10 sccm of N_2 flow rate, which is measured by AFM in the scanning probe microscope mode. Meanwhile, friction characteristic of the N-doped DLC films reaches a minimum value of 0.010.展开更多
The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was reali...The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5×10^-3-10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B0of 6300 G.Ar HWP with electron density~10^18–10^20m^-3 and electron temperature~4–7 e V was produced at high B0 of 5100 G,with an RF power of 1500 W.Maximum Ar^+ion flux of 7.8×10^23m^-2s^-1 with a bright blue core plasma was obtained at a high B0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar^+ ion-beams of 40.1 eV are formed,which are supersonic(~3.1cs).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1×10^24N2/m^2 h.展开更多
In this study,the effects of plasma treatment parameters on surface morphology,chemical constituent,dycabiliiy and color fastness of silk fabric were investigated.Atmospheric pressure glow discharge plasma generated w...In this study,the effects of plasma treatment parameters on surface morphology,chemical constituent,dycabiliiy and color fastness of silk fabric were investigated.Atmospheric pressure glow discharge plasma generated with different applied voltages(0 kV to 45 kV)was used to treat the surface of silk fabrics.C I Natural Yellow 3 was used to dye untreated and plasma-treated silk fabrics.The physical analysis based on scanning electron microscopy showed that the surface of silk fabrics was affected by plasma treatment.The chemical analysis was investigated with x-ray photi>elcctron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy.The results showed that the content of C Is decreased with the increasing applied voltage,the content of N Is and O Is increased with the increasing applied voltage.The increasing K/S values represented that the dyeability of silk fabrics was improved after plasma treatment.The color fastness to dry and wet rubbing was decreased after plasma treatment.展开更多
The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and nu...The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and numerical calculations.It is found that the longitudinal magnetic field can affect the heating by changing the level of the pressure heating along the longitudinal direction and that of the Ohmic heating along the direction which is perpendicular to both driving electric field and the applied transverse magnetic field,and a continuously increased longitudinal magnetic field can induce pressure heating to become dominant.Moreover,the electron temperature as well as proportion of some low energy electrons will increase if a small longitudinal magnetic field is introduced,which is attributed to the increased average electron energy.We believe that the research will provide guidance for optimizing the magnetic field configuration of some discharge systems having both transverse and longitudinal magnetic field.展开更多
Herein we report the successful preparation of silver(Ag)-decorated vertically oriented graphene sheets(Ag/VGs)via helicon wave plasma chemical vapor deposition(HWP-CVD)and radiofrequency plasma magnetron sputtering(R...Herein we report the successful preparation of silver(Ag)-decorated vertically oriented graphene sheets(Ag/VGs)via helicon wave plasma chemical vapor deposition(HWP-CVD)and radiofrequency plasma magnetron sputtering(RF-PMS).VGs were synthesized in a mixture of argon and methane(Ar/CH_(4))by HWP-CVD and then the Ag nanoparticles on the prepared VGs were modified using the RF-PMS system for different sputtering times and RF power levels.The morphology and structure of the Ag nanoparticles were characterized by scanning electron microscopy and the results revealed that Ag nanoparticles were evenly dispersed on the mesoporous wall of the VGs.X-ray diffraction results showed that the diameter of the Ag particles increased with the increase in Ag loading,and the average size was between 10.49 nm and 25.9 nm,consistent with the transmission electron microscopy results.Ag/VGs were investigated as effective electrocatalysts for use in an alkaline aqueous system.Due to the uniquely ordered and interconnected wall structure of VGs,the area of active sites increased with the Ag loading,giving the Ag/VGs a good performance in the oxygen evolution reaction.The double-layer capacitance(C_(dl))of the Ag/VGs under different Ag loadings were studied,and the results showed that the highest Ag content gave the best C_(dl)(1.04 mF cm^(-2)).Our results show that Ag/VGs are likely to be credible electrocatalytic materials.展开更多
A new technique of the synthesis of Nanocrystalline Diamond(NCD)Films by helicon wave plasma(HWP)chemical vapor deposition at room temperature was reported.The growth morphology and the roughness of NCD samples was ch...A new technique of the synthesis of Nanocrystalline Diamond(NCD)Films by helicon wave plasma(HWP)chemical vapor deposition at room temperature was reported.The growth morphology and the roughness of NCD samples was characterized using filed emission scanning electron microscopy(SEM-SU8010)and atom force microscopy(AFM),respectively.The results show the growth rate of the film was very fast,about 833nm/min.Typical G,D展开更多
Dear Editors,Plasma-Wall Interactions(PWIs)are important for the development of magnetic confinement fusion devices such as International Thermonuclear Experimental Reactor(ITER),as they can release impurities into th...Dear Editors,Plasma-Wall Interactions(PWIs)are important for the development of magnetic confinement fusion devices such as International Thermonuclear Experimental Reactor(ITER),as they can release impurities into the plasma,erode the surfaces,or produce retention of fuel in the wall。展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFE03050001)the National Natural Science Foundation of China(Grant Nos.12175160 and 12305284).The authors thank Suzhou Maxwell Technologies Co.,Ltd.for partial hardware and particle financial support to carry out the research.
文摘We deposited indium-tin-oxide(ITO)films on silicon and quartz substrates by magnetron sputtering technology in pure argon.Using electrostatic quadrupole plasma diagnostic technology,we investigate the effects of discharge power and discharge pressure on the ion flux and energy distribution function of incidence on the substrate surface,with special attention to the production of high-energy negative oxygen ions,and elucidate the mechanism behind its production.At the same time,the structure and properties of ITO films are systematically characterized to understand the potential effects of high energy oxygen ions on the growth of ITO films.Combining with the kinetic property analysis of sputtering damage mechanism of transparent conductive oxide(TCO)thin films,this study provides valuable physical understanding of optimization of TCO thin film deposition process.
基金financial supports by National Natural Science Foundation of China(Nos.11975163 and 12175160)Nantong Basic Science Research-General Program(No.JC22022034)Natural Science Research Fund of Jiangsu College of Engineering and Technology(No.GYKY/2023/2)。
文摘This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,attributed to heightened plasma potential and initial emergent energy.Simultaneously,the positive ion flux escalates owing to amplified sputtering rates and electron density.Conversely,negative ions exhibit broad ion energy distribution functions(IEDFs)characterized by multiple peaks.These patterns are clarified by a combination of radiofrequency oscillation of cathode voltage and plasma potential,alongside ion transport time.This elucidation finds validation in a one-dimensional model encompassing the initial ion energy.At higher RF power,negative ions surpassing 100 e V escalate in both flux and energy,posing a potential risk of sputtering damages to ITO layers.
基金supported by National Natural Science Foundation of China (Nos. 11975163 and 12175160)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘In this study, we found a kind of edge state located at the interface between plasma photonic crystals(PPCs) and traditional photonic crystals, which depends on the property of the photonic band gap rather than the surface defect. Simulation and theoretical analysis show that by adjusting the plasma density, we can change the topological characteristics of the photonic band gap of PPCs. This makes it different from the photonic band gap of traditional PCs, and thus excites or closes the topological edge states. We further discussed the influence of plasma parameters on edge state characteristics, and the results showed that as the plasma density increased, the first photonic band gap(PBG) of the PPCs closed and then reopened, resulting in band inversion and a change in the PBG properties of the PPCs. We can control the generation of edge states through plasma and adjust the frequency and strength of the edge states. After the appearance of edge states, as the plasma density further increases, the first PBG of the PPCs will shift towards high frequencies and deepen. The frequency of edge states will shift towards higher frequencies, and their strength will also increase. We increased the first PBG depth of the PPCs by increasing the number of arrays and found that when the number of the PPCs arrays increased, only the intensity of the edge states would increase while the frequency remained unchanged. Therefore, flexible adjustment of edge state frequency and intensity can be achieved through plasma density and array quantity parameters. Our study demonstrates the properties of topological edge states in plasma photonic crystals, which we believe can provide some guidance for applications based on edge states.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11975163 and 12175160)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts: preliminary calculation, actual discharge experiment and calculation. The results of preliminary calculation show that a magnetic field that is too small or too large cannot produce a good power deposition effect. When the magnetic field strength is 1200 Gs,a better power deposition can be obtained. The actual discharge experiment illustrates that the change of the magnetic field will have a certain influence on the discharge phenomenon. Finally, the results of verification calculation successfully verify the accuracy of the results of preliminary simulation. The results show that in the actual discharge experiment, it can achieve the best deposition effect when the magnetic field is 1185 Gs.
基金supported by National Natural Science Foundation of China(Nos.11975163 and 12175160)together with a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘In this work,the antibacterial activity of cotton containing silver nanocapsules prepared by atmospheric pressure plasma(APP)deposition is investigated.The nanocapsules consist of a shell and a silver nanoparticle(Ag NP)core,where the core is used to bring antibacterial activity,and the shell is utilized to suppress the potential toxicity of Ag NPs.The surface morphology and the elements of the samples are analyzed by scanning electron microscopy(SEM),energy dispersive x-ray and x-ray photoelectron spectroscopy(XPS).The SEM results show that the skin of the cotton fibers will fall off gradually after APP treatment over 3 min,and the XPS results show that the Ag content will rise to 1.6%after APP deposition for 10 min.Furthermore,the antimicrobial activity tests show that the reduction rates of Escherichia coli and Staphylococcus aureus can achieve 100%when the sample is treated for 10 min,which exhibits excellent antibacterial activity.In addition,the UV absorption properties of the cotton will also be correspondingly improved,which brings a broader application prospect for antibacterial cotton.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFE03050001)partly by the National Natural Science Foundation of China (Grant No.12175160)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The direct implicit particle-in-cell is a powerful kinetic method for researching plasma characteristics.However,it is time-consuming to obtain the future electromagnetic field in such a method since the field equations contain time-dependent matrix coefficients.In this work,we propose to explicitly push particles and obtain the future electromagnetic field based on the information about the particles in the future.The new method retains the form of implicit particle pusher,but the future field is obtained by solving the traditional explicit equation.Several numerical experiments,including the motion of charged particle in electromagnetic field,plasma sheath,and free diffusion of plasma into vacuum,are implemented to evaluate the performance of the method.The results demonstrate that the proposed method can suppress finite-grid-instability resulting from the coarse spatial resolution in electron Debye length through the strong damping of high-frequency plasma oscillation,while accurately describe low-frequency plasma phenomena,with the price of losing the numerical stability at large time-step.We believe that this work is helpful for people to research the bounded plasma by using particle-in-cell simulations.
基金supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2014GB106005 and 2014GB106000)National Natural Science Foundation of China (Nos. 11505123,11435009,11375126)Project funded by China Postdoctoral Science Foundation (No. 156455)
文摘In this paper, N-doped diamond-like carbon(DLC) films were deposited on silicon substrates by using helicon wave plasma chemical vapor deposition(HWP-CVD) with the Ar/CH_4/N_2 mixed gas. The surface morphology, structural and mechanical properties of the N-doped DLC films were investigated in detail by scanning electron microscopy(SEM), x-ray photoelectron spectroscopy(XPS), Raman spectra, and atomic force microscopy(AFM). It can be observed from SEM images that surface morphology of the films become compact and uniform due to the incorporation of N. The maximum of the deposition rate of the films is 143 nm min^(-1), which is related to the high plasma density. The results of XPS show that the N incorporates in the films and the C-C sp^3 bond content increases firstly up to the maximum(20%) at 10 sccm of N_2 flow rate, and then decreases with further increase in the N_2 flow rate. The maximum Young's modulus of the films is obtained by the doping of N and reaches 80 GPa at 10 sccm of N_2 flow rate, which is measured by AFM in the scanning probe microscope mode. Meanwhile, friction characteristic of the N-doped DLC films reaches a minimum value of 0.010.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Grant Nos.2014GB106005 and 2010GB106000)National Natural Science Foundation of China(Nos.11505123 11435009 11375126)a Project funded by China Postdoctoral Science Foundation(No.156455)
文摘The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5×10^-3-10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B0of 6300 G.Ar HWP with electron density~10^18–10^20m^-3 and electron temperature~4–7 e V was produced at high B0 of 5100 G,with an RF power of 1500 W.Maximum Ar^+ion flux of 7.8×10^23m^-2s^-1 with a bright blue core plasma was obtained at a high B0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar^+ ion-beams of 40.1 eV are formed,which are supersonic(~3.1cs).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1×10^24N2/m^2 h.
文摘In this study,the effects of plasma treatment parameters on surface morphology,chemical constituent,dycabiliiy and color fastness of silk fabric were investigated.Atmospheric pressure glow discharge plasma generated with different applied voltages(0 kV to 45 kV)was used to treat the surface of silk fabrics.C I Natural Yellow 3 was used to dye untreated and plasma-treated silk fabrics.The physical analysis based on scanning electron microscopy showed that the surface of silk fabrics was affected by plasma treatment.The chemical analysis was investigated with x-ray photi>elcctron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy.The results showed that the content of C Is decreased with the increasing applied voltage,the content of N Is and O Is increased with the increasing applied voltage.The increasing K/S values represented that the dyeability of silk fabrics was improved after plasma treatment.The color fastness to dry and wet rubbing was decreased after plasma treatment.
基金supported by National Natural Science Foundation of China (Nos. 11975163 and 12175160)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and numerical calculations.It is found that the longitudinal magnetic field can affect the heating by changing the level of the pressure heating along the longitudinal direction and that of the Ohmic heating along the direction which is perpendicular to both driving electric field and the applied transverse magnetic field,and a continuously increased longitudinal magnetic field can induce pressure heating to become dominant.Moreover,the electron temperature as well as proportion of some low energy electrons will increase if a small longitudinal magnetic field is introduced,which is attributed to the increased average electron energy.We believe that the research will provide guidance for optimizing the magnetic field configuration of some discharge systems having both transverse and longitudinal magnetic field.
基金supported by National Natural Science Foundation of China(No.11975163)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Herein we report the successful preparation of silver(Ag)-decorated vertically oriented graphene sheets(Ag/VGs)via helicon wave plasma chemical vapor deposition(HWP-CVD)and radiofrequency plasma magnetron sputtering(RF-PMS).VGs were synthesized in a mixture of argon and methane(Ar/CH_(4))by HWP-CVD and then the Ag nanoparticles on the prepared VGs were modified using the RF-PMS system for different sputtering times and RF power levels.The morphology and structure of the Ag nanoparticles were characterized by scanning electron microscopy and the results revealed that Ag nanoparticles were evenly dispersed on the mesoporous wall of the VGs.X-ray diffraction results showed that the diameter of the Ag particles increased with the increase in Ag loading,and the average size was between 10.49 nm and 25.9 nm,consistent with the transmission electron microscopy results.Ag/VGs were investigated as effective electrocatalysts for use in an alkaline aqueous system.Due to the uniquely ordered and interconnected wall structure of VGs,the area of active sites increased with the Ag loading,giving the Ag/VGs a good performance in the oxygen evolution reaction.The double-layer capacitance(C_(dl))of the Ag/VGs under different Ag loadings were studied,and the results showed that the highest Ag content gave the best C_(dl)(1.04 mF cm^(-2)).Our results show that Ag/VGs are likely to be credible electrocatalytic materials.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2014GB106005,2010GB106000)the National Natural Science Foundation of China(No.11175126,11375126,11435009,11505123)+1 种基金a Project funded by China Postdoctoral Science Foundationa Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A new technique of the synthesis of Nanocrystalline Diamond(NCD)Films by helicon wave plasma(HWP)chemical vapor deposition at room temperature was reported.The growth morphology and the roughness of NCD samples was characterized using filed emission scanning electron microscopy(SEM-SU8010)and atom force microscopy(AFM),respectively.The results show the growth rate of the film was very fast,about 833nm/min.Typical G,D
基金supported by the National Magnetic Confinement Fusion Program of China(Grant Nos.2014GB106005 and 2010GB106000)the National Natural Science Foundation of China(Grant Nos.1117512611435009 and 11505123)
文摘Dear Editors,Plasma-Wall Interactions(PWIs)are important for the development of magnetic confinement fusion devices such as International Thermonuclear Experimental Reactor(ITER),as they can release impurities into the plasma,erode the surfaces,or produce retention of fuel in the wall。