Purpose: To introduce a practical method of using an Electron Density Phantom (EDP) to evaluate different dose calculation algorithms for photon beams in a treatment planning system (TPS) and to commission the Anisotr...Purpose: To introduce a practical method of using an Electron Density Phantom (EDP) to evaluate different dose calculation algorithms for photon beams in a treatment planning system (TPS) and to commission the Anisotropic Analytical Algorithm (AAA) with inhomogeneity correction in Varian Eclipse TPS. Methods and Materials: The same EDP with various tissue-equivalent plugs (water, lung exhale, lung inhale, liver, breast, muscle, adipose, dense bone, trabecular bone) used to calibrate the computed tomography (CT) simulator was adopted to evaluate different dose calculation algorithms in a TPS by measuring the actual dose delivered to the EDP. The treatment plans with a 6-Megavolt (MV) single field of 20 × 20, 10 × 10, and 4 × 4 cm2 field sizes were created based on the CT images of the EDP. A dose of 200 cGy was prescribed to the exhale-lung insert. Dose calculations were performed with AAA with inhomogeneity correction, Pencil Beam Convolution (PBC), and AAA without inhomogeneity correction. The plans were delivered and the actual doses were measured using radiation dosimetry devices MapCheck, EDR2-film, and ionization chamber respectively. Measured doses were compared with the calculated doses from the treatment plans. Results: The calculated dose using the AAA with inhomogeneity correction was most consistent with the measured dose. The dose discrepancy for all types of tissues covered by beam fields is at the level of 2%. The effect of AAA inhomogeneity correction for lung tissues is over 14%. Conclusions: The use of EDP and Map Check to evaluate and commission the dose calculation algorithms in a TPS is practical. In Varian Eclipse TPS, the AAA with inhomogeneity correction should be used for treatment planning especially when lung tissues are involved in a small radiation field.展开更多
Background and Purpose: To perform a retrospective in vivo dosimetry study of 129 total body irradiation (TBI) on leukemia and bone marrow transplant patients treated in our clinic from 2008 to 2011 and to find out if...Background and Purpose: To perform a retrospective in vivo dosimetry study of 129 total body irradiation (TBI) on leukemia and bone marrow transplant patients treated in our clinic from 2008 to 2011 and to find out if there is any indication of the necessity of developing a new efficient TBI approach. Materials and Methods: The in vivo dosimetry data of 129 patients treated with TBI between 2008 and 2011 were retrieved from the database and analyzed. These patients were mostly treated with the regime of a single fraction or 6 fractions with some exceptions of 8-fraction or 2-fraction treatments depending on the protocols that were applied. For every fraction of treatment, 10 pairs of diode dosimeters were used to monitor the doses to the midline of head, neck, arms, mediastinum, left lung, right lung, umbilicus, thigh, knee, and ankle for both AP and PA fields. The doses to the midline of the above body parts were considered to be the average of the AP and PA readings of each diode pair. Dose deviation from the prescribed value for each body part was studied by plotting the histogram of the frequency versus deviation and comparing this with the dose delivered to the midline of the umbilicus to where the dose was prescribed. The correlation of dose deviation to body part thickness was also studied. By studying the dose deviations, we can find the uniformity of general dose distributions for conventional TBI treatments. Results: The retrospective dosimetry study of the 129 TBI patient treatments indicates that for most of the patients treated in our clinic, the doses received by different body parts monitored with in vivo dosimetry were within the window of 10% difference from the prescribed dose. The inhomogeneity of dose on different body parts could be manually improved by using compensators, but the method is cumbersome and time consuming. The dose deviation in many histograms ranging from about ?10% to 10% indicates some incongruity of dose distribution. This could be due to the method of using lead compensators for a manual dose adjustment which could not ideally compensate for different body thicknesses everywhere. Conclusions: The conventional TBI could give uniform dose to the major body parts under the online in vivo dosimetry monitoring at the level of 10%, but the treatment procedure is cumbersome and time consuming. This implies the importance of developing a new and efficient TBI method by adopting modern radiation therapy technique.展开更多
文摘Purpose: To introduce a practical method of using an Electron Density Phantom (EDP) to evaluate different dose calculation algorithms for photon beams in a treatment planning system (TPS) and to commission the Anisotropic Analytical Algorithm (AAA) with inhomogeneity correction in Varian Eclipse TPS. Methods and Materials: The same EDP with various tissue-equivalent plugs (water, lung exhale, lung inhale, liver, breast, muscle, adipose, dense bone, trabecular bone) used to calibrate the computed tomography (CT) simulator was adopted to evaluate different dose calculation algorithms in a TPS by measuring the actual dose delivered to the EDP. The treatment plans with a 6-Megavolt (MV) single field of 20 × 20, 10 × 10, and 4 × 4 cm2 field sizes were created based on the CT images of the EDP. A dose of 200 cGy was prescribed to the exhale-lung insert. Dose calculations were performed with AAA with inhomogeneity correction, Pencil Beam Convolution (PBC), and AAA without inhomogeneity correction. The plans were delivered and the actual doses were measured using radiation dosimetry devices MapCheck, EDR2-film, and ionization chamber respectively. Measured doses were compared with the calculated doses from the treatment plans. Results: The calculated dose using the AAA with inhomogeneity correction was most consistent with the measured dose. The dose discrepancy for all types of tissues covered by beam fields is at the level of 2%. The effect of AAA inhomogeneity correction for lung tissues is over 14%. Conclusions: The use of EDP and Map Check to evaluate and commission the dose calculation algorithms in a TPS is practical. In Varian Eclipse TPS, the AAA with inhomogeneity correction should be used for treatment planning especially when lung tissues are involved in a small radiation field.
文摘Background and Purpose: To perform a retrospective in vivo dosimetry study of 129 total body irradiation (TBI) on leukemia and bone marrow transplant patients treated in our clinic from 2008 to 2011 and to find out if there is any indication of the necessity of developing a new efficient TBI approach. Materials and Methods: The in vivo dosimetry data of 129 patients treated with TBI between 2008 and 2011 were retrieved from the database and analyzed. These patients were mostly treated with the regime of a single fraction or 6 fractions with some exceptions of 8-fraction or 2-fraction treatments depending on the protocols that were applied. For every fraction of treatment, 10 pairs of diode dosimeters were used to monitor the doses to the midline of head, neck, arms, mediastinum, left lung, right lung, umbilicus, thigh, knee, and ankle for both AP and PA fields. The doses to the midline of the above body parts were considered to be the average of the AP and PA readings of each diode pair. Dose deviation from the prescribed value for each body part was studied by plotting the histogram of the frequency versus deviation and comparing this with the dose delivered to the midline of the umbilicus to where the dose was prescribed. The correlation of dose deviation to body part thickness was also studied. By studying the dose deviations, we can find the uniformity of general dose distributions for conventional TBI treatments. Results: The retrospective dosimetry study of the 129 TBI patient treatments indicates that for most of the patients treated in our clinic, the doses received by different body parts monitored with in vivo dosimetry were within the window of 10% difference from the prescribed dose. The inhomogeneity of dose on different body parts could be manually improved by using compensators, but the method is cumbersome and time consuming. The dose deviation in many histograms ranging from about ?10% to 10% indicates some incongruity of dose distribution. This could be due to the method of using lead compensators for a manual dose adjustment which could not ideally compensate for different body thicknesses everywhere. Conclusions: The conventional TBI could give uniform dose to the major body parts under the online in vivo dosimetry monitoring at the level of 10%, but the treatment procedure is cumbersome and time consuming. This implies the importance of developing a new and efficient TBI method by adopting modern radiation therapy technique.