期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Enabling structural and interfacial stability of 5 V spinel LiNi0.5Mn1.5O4 cathode by a coherent interface 被引量:2
1
作者 Min Xu Ming Yang +6 位作者 Minfeng Chen lanhui gu Linshan Luo Songyan Chen Jizhang Chen Bo Liu Xiang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期266-276,I0007,共12页
Spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),a 5 V class high voltage cathode,has been regarded as an attractive candidate to further improve the energy density of lithium-ion battery.The issue simultaneously enabling side st... Spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),a 5 V class high voltage cathode,has been regarded as an attractive candidate to further improve the energy density of lithium-ion battery.The issue simultaneously enabling side stability and maintaining high interfacial kinetics,however,has not yet been resolved.Herein,we design a coherent Li_(1.3)A_(l0.3)Ti_(1.7)(PO)_(4)(LATP)layer that is crystally connected to the spinel LNMO host lattices,which offers fast lithium ions transportation as well as enhances the mechanical stability that prevents the particle fracture.Furthermore,the inactive Li_(3)BO_(3)(LBO)coating layer inhibits the corrosion of transition metals and continuous side reactions.Consequently,the coherent-engineered LNMO-LATPLBO cathode material exhibits superior electrochemical cycling stability in a window of 3.0–5.0 V,for example a high-capacity retention that is 89.7%after 500 cycles at 200 m A g-1obtained and enhanced rate performance(85.1 m A h g^(-1)at 800 m A g^(-1))when tested with a LiPF6-based carbonate electrolyte.Our work presents a new approach of engineering 5 V class spinel oxide cathode that combines interfacial coherent crystal lattice design and surface coating. 展开更多
关键词 Lithium-ion battery Spinel cathode LATP Coherent interface
下载PDF
Li-MOF-based ions regulator enabling fast-charging and dendrite-free lithium metal anode 被引量:1
2
作者 Xiang Han Tiantian Wu +4 位作者 lanhui gu Minfeng Chen Jianzhong Song Dan Tian Jizhang Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期489-494,共6页
Li metal has been regarded as the holy grail for the next-generation Li-ion battery.Li dendrites issues,however,impede its practical application.In general,prolonging the sand time of Li nucleation and regulating homo... Li metal has been regarded as the holy grail for the next-generation Li-ion battery.Li dendrites issues,however,impede its practical application.In general,prolonging the sand time of Li nucleation and regulating homogeneous Li^(+) flux are effective approaches to suppress the dendrites formation and growth.Regarding this view,a functional polypropylene (PP) separator is developed to regulate ion transportation via a newly designed Li-based metal-organic framework (Li-MOF) coating.The Li-MOF crystallizes in the orthorhombic space group P212121 and features a double-walled three-dimensional (3D) structure with 1D channels.The well-defined intrinsic nanochannels of Li-MOF and the steric-hinerance effect both restrict free migration of anions,contributing to a high Li^(+) transference number of 0.65,which improve the Sand time of Li nucleation.Meanwhile,the Li-MOF coating with uniform porous structure promotes homogeneous Li^(+) flux at the surface of Li metal.Furthermore,the Li-MOF coating layer helps to build solid-electrolyte interphase (SEI) layer that comprises of inorganic Li F and Li_(3)N,which further prohibits the dendrites growth.Consequently,a highly stable Li plating/stripping cycling for over 1000 h is achieved.The functional separator also enables high-performance full lithium metal cells,the high-rate and long-stable cycling performance of Li Ni_(0.8)Mn_(0.1)Co_(0.1)(NMC811)-Li and Li Co O_(2)(LCO)-Li cells further demonstrate the feasibility of this concept. 展开更多
关键词 Lithium-ion battery Li metal anode Metal-organic framework Li ions flux Solid-electrolyte interphase
原文传递
Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery
3
作者 Xiang Han Weijun Zhou +7 位作者 Minfeng Chen Linshan Luo lanhui gu Qiaobao Zhang Jizhang Chen Bo Liu Songyan Chen Wenqing Zhang 《Nano Research》 SCIE EI CSCD 2022年第7期6156-6167,共12页
Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathode... Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathodes with high operating voltage and area capacity.Current composite cathode manufacturing technologies,however,suffer from large interfacial resistance and low active mass loading that with excessive amounts of polymer electrolytes and conductive additives.Here,we report a liquidphase sintering technology that offers mixed ionic-electronic interphases and free-standing electrode architecture design,which eventually contribute to high area capacity.A small amount(~4 wt.%)of lithium hydroxide(LiOH)and boric acid(H_(3)BO_(3))with low melting point are utilized as sintering additives that infiltrate into single-crystal Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)(NMC811)particles at a moderately elevated temperature(~350℃)in a liquid state,which not only enable intimate physical contact but also promote the densification process.In addition,the liquid-phase additives react and transform to ionic-conductive lithium boron oxide,together with the indium tin oxide(ITO)nanoparticle coating,mixed ionic-electronic interphases of composite cathode are successfully fabricated.Furthermore,the liquid-phase sintering performed at high-temperature(~800℃)also enables the fabrication of highly dense and thick composite cathodes with a novel free-standing architecture.The promising performance characteristics of such composite cathodes,for example,delivering an area capacity above 8 mAh·cm^(−2) within a wide voltage window up to 4.4 V,open new opportunities for SSBs with a high energy density of 500 Wh·kg^(−1) for safer portable electronic and electrical transport. 展开更多
关键词 solid-state battery single-crystal Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1) liquid-phase sintering mixed ionic-electronic interphases freestanding architecture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部