The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direc...The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.展开更多
Nonlinear stability of the motionless double-diffusive solution of the problem of an infinite horizontal fluid layer saturated porous medium is studied. The layer is heated and salted from below. By introducing two ba...Nonlinear stability of the motionless double-diffusive solution of the problem of an infinite horizontal fluid layer saturated porous medium is studied. The layer is heated and salted from below. By introducing two balance fields and through defining new energy functionals it is proved that for CLe ≥ R, Le ≤ 1 the motionless double-diffusive solution is always stable and for CLe < R, Le < 1 the solution is globally exponentially and nonlinearly stable whenever R < 4π~2+ Le C, where Le, C and R are the Lewis number, Rayleigh number for solute and heat, respectively. Moreover, the nonlinear stability proved here is global and exponential, and the stabilizing effect of the concentration is also proved.展开更多
A rotating liquid film reactor (RLFR) is a device of two coaxial rotating conical cylinders with the inner cone rotating and the outer one stationary. A complete mathematical model for the flow between the conical cyl...A rotating liquid film reactor (RLFR) is a device of two coaxial rotating conical cylinders with the inner cone rotating and the outer one stationary. A complete mathematical model for the flow between the conical cylinders is built and a dimensional analysis is carried out. It is proved that at each point of the flow field the dimensionless pressure and velocity of the flow are determined by parameters: Reynolds number (Re), aspect ratio (Γ), radius ratio (η) and wall inclination angle (α). Furthermore, a sufficient and a necessary condition are derived from mechanical similarity between RLFR and a manufacturing equipment geometrically similar to RLFR. Finally, a numerical simulation for the distribution of pressure and velocity is performed. The results may provide a theoretical basis for experiment method and numerical simulation of the flow in a RLFR-like device.展开更多
基金supported by the National Natural Science Foundation of China(21627813)。
文摘The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.
基金supported by National Natural Science Foundation Project(41671229)
文摘Nonlinear stability of the motionless double-diffusive solution of the problem of an infinite horizontal fluid layer saturated porous medium is studied. The layer is heated and salted from below. By introducing two balance fields and through defining new energy functionals it is proved that for CLe ≥ R, Le ≤ 1 the motionless double-diffusive solution is always stable and for CLe < R, Le < 1 the solution is globally exponentially and nonlinearly stable whenever R < 4π~2+ Le C, where Le, C and R are the Lewis number, Rayleigh number for solute and heat, respectively. Moreover, the nonlinear stability proved here is global and exponential, and the stabilizing effect of the concentration is also proved.
文摘A rotating liquid film reactor (RLFR) is a device of two coaxial rotating conical cylinders with the inner cone rotating and the outer one stationary. A complete mathematical model for the flow between the conical cylinders is built and a dimensional analysis is carried out. It is proved that at each point of the flow field the dimensionless pressure and velocity of the flow are determined by parameters: Reynolds number (Re), aspect ratio (Γ), radius ratio (η) and wall inclination angle (α). Furthermore, a sufficient and a necessary condition are derived from mechanical similarity between RLFR and a manufacturing equipment geometrically similar to RLFR. Finally, a numerical simulation for the distribution of pressure and velocity is performed. The results may provide a theoretical basis for experiment method and numerical simulation of the flow in a RLFR-like device.