Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-ind...Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy(LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350℃, 1400℃, and 1450℃. The results showed that slag composition and temperature significantly affected the intensity and stability of the LIBS spectra. Increasing the Fe content and temperature in the slag reduces its viscosity, resulting in an enhanced intensity and stability of the LIBS spectra. Additionally, 42 refined slag samples were quantitatively analyzed for Fe, Si, Ca, Mg, Al, and Mn at 1350℃, 1400℃, and 1450℃.The normalized full spectrum combined with partial least squares(PLS) quantification modeling was used, using the Ca Ⅱ 317.91 nm spectral line as an internal standard. The results show that using the internal standard normalization method can significantly reduce the influence of spectral fluctuations. Meanwhile, a temperature of 1450℃ has been found to yield superior results compared to both 1350℃ and 1400℃, and it is advantageous to conduct a quantitative analysis of the slag when it is in a “water-like” state with low viscosity.展开更多
This paper presents a method for the automatic adjustment of the laser defocusing amount in micro-laser-induced breakdown spectroscopy. A microscopic optical imaging system consisting of a CCD camera and a 20× ob...This paper presents a method for the automatic adjustment of the laser defocusing amount in micro-laser-induced breakdown spectroscopy. A microscopic optical imaging system consisting of a CCD camera and a 20× objective lens was adopted to realize the method. The real-time auto-focusing of the system was achieved by detecting the effective pixels of the light spot generated by the laser pointer. The focusing accuracy of the method could achieve 3 μm. The element concentrations of Mn and Ni in low-alloy steels were analyzed at a crater diameter of about 35 μm using the presented method. After using the presented method, the determination coefficients of Mn and Ni both exceeded 0.997, with the root-mean-square errors being 0.0133 and 0.0395, respectively. Scanning analysis was performed on the inclined plane and the curved surface by means of focusing control and non-focusing control. Ten characteristic spectral lines of Fe were selected as the analysis lines. With the focusing control, the average relative standard deviations obtained on the inclined plane and curved surface were both less than 5%, and much less than the values without focusing control, 14.6% and 40.39%.展开更多
In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection m...In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection method called recursive feature elimination based on ridge regression(Ridge-RFE)for the original spectral data is recommended to make full use of the valid information of spectra.In the Ridge-RFE method,the absolute value of the ridge regression coefficient was used as a criterion to screen spectral characteristic,the feature with the absolute value of minimum weight in the input subset features was removed by recursive feature elimination(RFE),and the selected features were used as inputs of the partial least squares regression(PLS)model.The Ridge-RFE method based PLS model was used to measure the Fe,Si,Mg,Cu,Zn and Mn for 51 aluminum alloy samples,and the results showed that the root mean square error of prediction decreased greatly compared to the PLS model with full spectrum as input.The overall results demonstrate that the Ridge-RFE method is more efficient to extract the redundant features,make PLS model for better quantitative analysis results and improve model generalization ability.展开更多
The multi-element components of low alloy steel were quantified by using laser-induced breakdown spectroscopy (LIBS) in deep UV. The Nd:YAG pulsed laser was used to produce plasma. The spectrum was simultaneously obta...The multi-element components of low alloy steel were quantified by using laser-induced breakdown spectroscopy (LIBS) in deep UV. The Nd:YAG pulsed laser was used to produce plasma. The spectrum was simultaneously obtained by deep UV spectrometer. This paper studied the influence of experiment parameters on LIBS spectral intensity, such as delay, energy of laser, and the distance between the focusing lens and the surface of the sample. With the optimal expe- riment parameters, the characteristic lines of C, Ni, Si, Cr and Cu contained in low alloy steel were selected for quantit- ative analysis and the calibration curves of these elements were obtained. The linear correlation coefficient was good. Using the calibration curves to quantitative analysis for the sample 05-d, and the relative error of analytical results is less than 10% for most elements.展开更多
A self-built double-pulse remote Laser-Induced Breakdown Spectroscopy system in a collinear configuration was used to?investigate?the magnesium?alloys. The enhancement of the intensity was observed, about 4.7 times co...A self-built double-pulse remote Laser-Induced Breakdown Spectroscopy system in a collinear configuration was used to?investigate?the magnesium?alloys. The enhancement of the intensity was observed, about 4.7 times compared with single pulse LIBS. The peak intensities of line Y II 366.4 nm and Zr I 468.7 nm were used in the calibration curves, and the correlation coefficients were 0.9998 and 0.9547 respectively.展开更多
Laser beams with ns pulse width are generally employed as an excitation source in the process of detecting inclusions and elemental segregation on a workpiece surface by microanalysis of the laser-induced breakdown sp...Laser beams with ns pulse width are generally employed as an excitation source in the process of detecting inclusions and elemental segregation on a workpiece surface by microanalysis of the laser-induced breakdown spectroscopy.In addition,the ablation crater interval of laser sampling on the sample surface is generally 20μm or more.It is difficult to detect the morphology of inclusions smaller than 50μm in diameter and the micro-segregation of elements.However,in this work,when the laser ablation crater is 10μm and the sampling resolution of the laser on the sample surface is 5μm,the morphology and distribution of spherical inclusions(20–60μm)in ductile iron can be detected according to the difference of the Fe spectrum on the Fe matrix and the spheroidal inclusions.Moreover,the distribution of micro-segregation of Mg and Ti elements in ductile iron was also studied.展开更多
The concentrations of SiO,Al2O,KO,NaO,CaO,MgO,Fe2Oand TiO,and loss on ignition(L.O.I.) are the main inorganic components of geological samples.Concentrations of the eight oxides and L.O.I.are also the main indicators ...The concentrations of SiO,Al2O,KO,NaO,CaO,MgO,Fe2Oand TiO,and loss on ignition(L.O.I.) are the main inorganic components of geological samples.Concentrations of the eight oxides and L.O.I.are also the main indicators of concern in the production of building ceramics.Quantitative analysis of the eight oxides and L.O.I.was performed using fiber-laserbased laser-induced breakdown spectroscopy(LIBS).A combination of continuous background deduction,full width at half maximum(FWHM) intensity integral and spectral sum normalization was proposed for data processing.After the data processing combined the continuous background deduction,FWHM intensity integral and spectral sum normalization,the mean absolute errors(MAEs) of the calibration of L.O.I.,SiO,Al2O,KO,NaO,CaO,MgO,Fe2Oand TiOwas reduced from 2.03%,12.06%,4.84%,1.10%,0.69%,0.31%,0.11%,0.20%and 0.10% to 1.80%,9.48%,2.12%,0.36%,0.58%,0.11%,0.08%,0.19% and 0.05%,respectively.This multivariate method was further introduced and discussed to improve the analysis performance.The MAEs of L.O.I.,SiO,Al2O,KO and NaO were further reduced to1.12%,2.07%,1.38%,0.35% and 0.43%,respectively.The results show that the overall prediction error can meet the requirements for the production of building ceramics.The LIBS desktop analyzer has great potential in detection applications on geological samples.展开更多
结合激光诱导击穿光谱(LIBS)技术,设计激光清洗在线监测系统以实时监测激光清洗的质量。实验所用的激光器为光纤激光器,其可以在多维空间中加工应用。首先确定激光清洗速度,并研究LIBS随激光单脉冲能量密度的变化规律,用来表征碳纤维复...结合激光诱导击穿光谱(LIBS)技术,设计激光清洗在线监测系统以实时监测激光清洗的质量。实验所用的激光器为光纤激光器,其可以在多维空间中加工应用。首先确定激光清洗速度,并研究LIBS随激光单脉冲能量密度的变化规律,用来表征碳纤维复合材料清洗的效果。然后在数据分析的处理上,采用均值平滑去除背景的方法处理包络状的光谱连续背景;采用DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法实现光谱噪声和有效数据的分离;采用皮尔逊系数分析的方法确定激光清洗的最佳烧蚀次数,为激光清洗实现过程自动优化控制提供判定依据。最后采用扫描电子显微镜分析碳纤维表面形貌特征,证实LIBS技术在线监测激光清洗效果的有效性。展开更多
基金financially supported by the National Key R&D Program Projects of China (No.2021YFB3202402)National Natural Science Foundation of China (No.62173321)。
文摘Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy(LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350℃, 1400℃, and 1450℃. The results showed that slag composition and temperature significantly affected the intensity and stability of the LIBS spectra. Increasing the Fe content and temperature in the slag reduces its viscosity, resulting in an enhanced intensity and stability of the LIBS spectra. Additionally, 42 refined slag samples were quantitatively analyzed for Fe, Si, Ca, Mg, Al, and Mn at 1350℃, 1400℃, and 1450℃.The normalized full spectrum combined with partial least squares(PLS) quantification modeling was used, using the Ca Ⅱ 317.91 nm spectral line as an internal standard. The results show that using the internal standard normalization method can significantly reduce the influence of spectral fluctuations. Meanwhile, a temperature of 1450℃ has been found to yield superior results compared to both 1350℃ and 1400℃, and it is advantageous to conduct a quantitative analysis of the slag when it is in a “water-like” state with low viscosity.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFF0106202)National Natural Science Foundation of China (Grant No. 61473279)+1 种基金the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDJ-SSW-JSC037)the Youth Innovation Promotion Association, CAS
文摘This paper presents a method for the automatic adjustment of the laser defocusing amount in micro-laser-induced breakdown spectroscopy. A microscopic optical imaging system consisting of a CCD camera and a 20× objective lens was adopted to realize the method. The real-time auto-focusing of the system was achieved by detecting the effective pixels of the light spot generated by the laser pointer. The focusing accuracy of the method could achieve 3 μm. The element concentrations of Mn and Ni in low-alloy steels were analyzed at a crater diameter of about 35 μm using the presented method. After using the presented method, the determination coefficients of Mn and Ni both exceeded 0.997, with the root-mean-square errors being 0.0133 and 0.0395, respectively. Scanning analysis was performed on the inclined plane and the curved surface by means of focusing control and non-focusing control. Ten characteristic spectral lines of Fe were selected as the analysis lines. With the focusing control, the average relative standard deviations obtained on the inclined plane and curved surface were both less than 5%, and much less than the values without focusing control, 14.6% and 40.39%.
基金supported by National Key Research and Development Program of China(No.2016YFF0102502)the Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-JSC037)the Youth Innovation Promotion Association,CAS,Liao Ning Revitalization Talents Program(No.XLYC1807110)。
文摘In the spectral analysis of laser-induced breakdown spectroscopy,abundant characteristic spectral lines and severe interference information exist simultaneously in the original spectral data.Here,a feature selection method called recursive feature elimination based on ridge regression(Ridge-RFE)for the original spectral data is recommended to make full use of the valid information of spectra.In the Ridge-RFE method,the absolute value of the ridge regression coefficient was used as a criterion to screen spectral characteristic,the feature with the absolute value of minimum weight in the input subset features was removed by recursive feature elimination(RFE),and the selected features were used as inputs of the partial least squares regression(PLS)model.The Ridge-RFE method based PLS model was used to measure the Fe,Si,Mg,Cu,Zn and Mn for 51 aluminum alloy samples,and the results showed that the root mean square error of prediction decreased greatly compared to the PLS model with full spectrum as input.The overall results demonstrate that the Ridge-RFE method is more efficient to extract the redundant features,make PLS model for better quantitative analysis results and improve model generalization ability.
文摘The multi-element components of low alloy steel were quantified by using laser-induced breakdown spectroscopy (LIBS) in deep UV. The Nd:YAG pulsed laser was used to produce plasma. The spectrum was simultaneously obtained by deep UV spectrometer. This paper studied the influence of experiment parameters on LIBS spectral intensity, such as delay, energy of laser, and the distance between the focusing lens and the surface of the sample. With the optimal expe- riment parameters, the characteristic lines of C, Ni, Si, Cr and Cu contained in low alloy steel were selected for quantit- ative analysis and the calibration curves of these elements were obtained. The linear correlation coefficient was good. Using the calibration curves to quantitative analysis for the sample 05-d, and the relative error of analytical results is less than 10% for most elements.
文摘A self-built double-pulse remote Laser-Induced Breakdown Spectroscopy system in a collinear configuration was used to?investigate?the magnesium?alloys. The enhancement of the intensity was observed, about 4.7 times compared with single pulse LIBS. The peak intensities of line Y II 366.4 nm and Zr I 468.7 nm were used in the calibration curves, and the correlation coefficients were 0.9998 and 0.9547 respectively.
基金supported by the National Key Research and Development Program of China(No.2017YFF0106202)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDJ-SSW-JSC037)+1 种基金the Liaoning Revitalization Talents Program(No.XLYC1807110)the Youth Innovation Promotion Association,Chinese Academy of Sciences。
文摘Laser beams with ns pulse width are generally employed as an excitation source in the process of detecting inclusions and elemental segregation on a workpiece surface by microanalysis of the laser-induced breakdown spectroscopy.In addition,the ablation crater interval of laser sampling on the sample surface is generally 20μm or more.It is difficult to detect the morphology of inclusions smaller than 50μm in diameter and the micro-segregation of elements.However,in this work,when the laser ablation crater is 10μm and the sampling resolution of the laser on the sample surface is 5μm,the morphology and distribution of spherical inclusions(20–60μm)in ductile iron can be detected according to the difference of the Fe spectrum on the Fe matrix and the spheroidal inclusions.Moreover,the distribution of micro-segregation of Mg and Ti elements in ductile iron was also studied.
基金supported by National Natural Science Foundation of China(No.62173321)the Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-JSC037)+2 种基金the Science and Technology Service Network Initiative Program,CAS(No.KFJ-STS-QYZD-2021-19-002)the Liaoning Provincial Natural Science Foundation(No.2021-BS-022)the Youth Innovation Promotion Association,CAS。
文摘The concentrations of SiO,Al2O,KO,NaO,CaO,MgO,Fe2Oand TiO,and loss on ignition(L.O.I.) are the main inorganic components of geological samples.Concentrations of the eight oxides and L.O.I.are also the main indicators of concern in the production of building ceramics.Quantitative analysis of the eight oxides and L.O.I.was performed using fiber-laserbased laser-induced breakdown spectroscopy(LIBS).A combination of continuous background deduction,full width at half maximum(FWHM) intensity integral and spectral sum normalization was proposed for data processing.After the data processing combined the continuous background deduction,FWHM intensity integral and spectral sum normalization,the mean absolute errors(MAEs) of the calibration of L.O.I.,SiO,Al2O,KO,NaO,CaO,MgO,Fe2Oand TiOwas reduced from 2.03%,12.06%,4.84%,1.10%,0.69%,0.31%,0.11%,0.20%and 0.10% to 1.80%,9.48%,2.12%,0.36%,0.58%,0.11%,0.08%,0.19% and 0.05%,respectively.This multivariate method was further introduced and discussed to improve the analysis performance.The MAEs of L.O.I.,SiO,Al2O,KO and NaO were further reduced to1.12%,2.07%,1.38%,0.35% and 0.43%,respectively.The results show that the overall prediction error can meet the requirements for the production of building ceramics.The LIBS desktop analyzer has great potential in detection applications on geological samples.
文摘结合激光诱导击穿光谱(LIBS)技术,设计激光清洗在线监测系统以实时监测激光清洗的质量。实验所用的激光器为光纤激光器,其可以在多维空间中加工应用。首先确定激光清洗速度,并研究LIBS随激光单脉冲能量密度的变化规律,用来表征碳纤维复合材料清洗的效果。然后在数据分析的处理上,采用均值平滑去除背景的方法处理包络状的光谱连续背景;采用DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法实现光谱噪声和有效数据的分离;采用皮尔逊系数分析的方法确定激光清洗的最佳烧蚀次数,为激光清洗实现过程自动优化控制提供判定依据。最后采用扫描电子显微镜分析碳纤维表面形貌特征,证实LIBS技术在线监测激光清洗效果的有效性。