Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro...Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries.展开更多
Platycodonis Radix(Jiegeng in Chinese)is a well-known traditional Chinese medicine used for both medicinal and culinary purposes.Its historical use as an antitussive and expectorant has been extensively documented.Res...Platycodonis Radix(Jiegeng in Chinese)is a well-known traditional Chinese medicine used for both medicinal and culinary purposes.Its historical use as an antitussive and expectorant has been extensively documented.Researchers,to date,have identified 219 chemical constituents in Platycodon grandiflorum(Jacq.)A.DC,encompassing 89 saponins,11 flavonoids,21 polysaccharides,14 phenolic acids,six polyacetylenes,five sterols,34 fatty acids,17 amino acids,and 22 trace elements.Jiegeng exhibits diverse pharmacological effects,including antitussive and anti-phlegm properties,anti-cancer activity,anti-inflammatory effects,immune regulation,antioxidant properties,anti-obesity,and antidiabetic effects.Additionally,Jiegeng shows potential in protecting the heart and liver.Beyond its medicinal benefits,Jiegeng is highly esteemed in culinary applications,and its global demand is on the rise.Its utilization has expanded beyond medicine and food to encompass daily necessities,cosmetics,agricultural supplies,and other fields.Currently,there are 18272 patents related to P.grandiflorum.This comprehensive review summarizes the latest research published over the past 20 years,providing a robust foundation for further exploration of the medicinal and health benefits of P.grandiflorum.展开更多
Inspired by nature,dynamic self-organized helical superstructures are becoming attractive as building blocks in soft photonic crystals and advanced chiroptical devices.Herein,a chirality invertible hydrazone photoswit...Inspired by nature,dynamic self-organized helical superstructures are becoming attractive as building blocks in soft photonic crystals and advanced chiroptical devices.Herein,a chirality invertible hydrazone photoswitch,possessing high helical twisting power(HTP)was judiciously designed and synthesized.Due to the photoinduced configuration changes of the hydrazone photoswitch,it displayed superior thermal stability and strikingly reversible HTP changes.By incorporating a novel chiral hydrazone(CH)into the liquid crystal(LC)host,a handedness invertible cholesteric liquid crystal(CLC)helical superstructure with high thermal stability and light-modulated photonic bandgap was prepared.We inferred that the mechanism of chirality inversion of the novel CH photoswitch derived from changes in the dihedral angle between the two naphthalene rings induced by hydrazone isomerization.Therefore,the influence of chemical structures on its photoresponsiveness was explored.Finally,the potential applications of this advanced light-driven CLC in soft photonic crystals,showing erasable and rewritable colorful patterns and chiroptical templates to induce handedness invertible circularly polarized luminescence were illustrated.展开更多
The bio-rack is a new approach for treating low-concentration polluted river water in wetland systems.A comparative study of the efficiency of contaminant removal between four plant species in bio-rack wetlands and be...The bio-rack is a new approach for treating low-concentration polluted river water in wetland systems.A comparative study of the efficiency of contaminant removal between four plant species in bio-rack wetlands and between a bio-rack system and control system was conducted on a small-scale (500 mm length × 400 mm width × 400 mm height) to evaluate the decontamination effects of four different wetland plants.There was generally a significant difference in the removal of total nitrogen (TN),ammonia nitrogen (NH 3-N) and total phosphorus (TP),but no significant difference in the removal of permanganate index (COD Mn) between the bio-rack wetland and control system.Bio-rack wetland planted with Thalia dealbata had higher nutrient removal rates than wetlands planted with other species.Plant fine-root (root diameter 3 mm) biomass rather than total plant biomass was related to nutrient removal efficiency.The study suggested that the nutrient removal rates are influenced by plant species,and high fine-root biomass is an important factor in selecting highly effective wetland plants for a bio-rack system.According to the mass balance,the TN and TP removal were in the range of 61.03-73.27 g/m^2 and 4.14-5.20 g/m^2 in four bio-rack wetlands during the whole operational period.The N and P removal by plant uptake constituted 34.9%-43.81% of the mass N removal and 62.05%-74.81% of the mass P removal.The study showed that the nitrification/denitrification process and plant uptake process are major removal pathways for TN,while plant uptake is an effective removal pathway for TP.展开更多
基金supported by the National Key R&D Program of China (2020YFE0100200)the National Natural Science Foundation of China (Grant Nos.51921002,51927806).
文摘Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries.
基金supported by the National Key Research and Development Program of China(No.2022YFC3501805)for financial support.
文摘Platycodonis Radix(Jiegeng in Chinese)is a well-known traditional Chinese medicine used for both medicinal and culinary purposes.Its historical use as an antitussive and expectorant has been extensively documented.Researchers,to date,have identified 219 chemical constituents in Platycodon grandiflorum(Jacq.)A.DC,encompassing 89 saponins,11 flavonoids,21 polysaccharides,14 phenolic acids,six polyacetylenes,five sterols,34 fatty acids,17 amino acids,and 22 trace elements.Jiegeng exhibits diverse pharmacological effects,including antitussive and anti-phlegm properties,anti-cancer activity,anti-inflammatory effects,immune regulation,antioxidant properties,anti-obesity,and antidiabetic effects.Additionally,Jiegeng shows potential in protecting the heart and liver.Beyond its medicinal benefits,Jiegeng is highly esteemed in culinary applications,and its global demand is on the rise.Its utilization has expanded beyond medicine and food to encompass daily necessities,cosmetics,agricultural supplies,and other fields.Currently,there are 18272 patents related to P.grandiflorum.This comprehensive review summarizes the latest research published over the past 20 years,providing a robust foundation for further exploration of the medicinal and health benefits of P.grandiflorum.
基金supported by the National Natural Science Foundation of China(grant nos.52202081,52073028,52073081,and 51720105002)the Natural Science Foundation of Jiangxi Province,China(grant no.20232BAB204030).
文摘Inspired by nature,dynamic self-organized helical superstructures are becoming attractive as building blocks in soft photonic crystals and advanced chiroptical devices.Herein,a chirality invertible hydrazone photoswitch,possessing high helical twisting power(HTP)was judiciously designed and synthesized.Due to the photoinduced configuration changes of the hydrazone photoswitch,it displayed superior thermal stability and strikingly reversible HTP changes.By incorporating a novel chiral hydrazone(CH)into the liquid crystal(LC)host,a handedness invertible cholesteric liquid crystal(CLC)helical superstructure with high thermal stability and light-modulated photonic bandgap was prepared.We inferred that the mechanism of chirality inversion of the novel CH photoswitch derived from changes in the dihedral angle between the two naphthalene rings induced by hydrazone isomerization.Therefore,the influence of chemical structures on its photoresponsiveness was explored.Finally,the potential applications of this advanced light-driven CLC in soft photonic crystals,showing erasable and rewritable colorful patterns and chiroptical templates to induce handedness invertible circularly polarized luminescence were illustrated.
基金supported by the National Natural Science Foundation of China(51927806,51921002,51903004 and 52202081)the National Natural Science Foundation of China Joint Fund(U22A20163)China Postdoctoral Science Foundation Funded Project(BX2021003 and 2022M720206)。
基金supported by the National Natural Science Foundation of China(52202081,52203322 and 52073028)the Natural Science Foundation of Jiangxi Province(20232BAB204030)China Postdoctoral Science Foundation funded project(BX2021003 and 2022M720206).
基金the financial support of the National water pollution control and management technology major project (No. 2008ZX07101)
文摘The bio-rack is a new approach for treating low-concentration polluted river water in wetland systems.A comparative study of the efficiency of contaminant removal between four plant species in bio-rack wetlands and between a bio-rack system and control system was conducted on a small-scale (500 mm length × 400 mm width × 400 mm height) to evaluate the decontamination effects of four different wetland plants.There was generally a significant difference in the removal of total nitrogen (TN),ammonia nitrogen (NH 3-N) and total phosphorus (TP),but no significant difference in the removal of permanganate index (COD Mn) between the bio-rack wetland and control system.Bio-rack wetland planted with Thalia dealbata had higher nutrient removal rates than wetlands planted with other species.Plant fine-root (root diameter 3 mm) biomass rather than total plant biomass was related to nutrient removal efficiency.The study suggested that the nutrient removal rates are influenced by plant species,and high fine-root biomass is an important factor in selecting highly effective wetland plants for a bio-rack system.According to the mass balance,the TN and TP removal were in the range of 61.03-73.27 g/m^2 and 4.14-5.20 g/m^2 in four bio-rack wetlands during the whole operational period.The N and P removal by plant uptake constituted 34.9%-43.81% of the mass N removal and 62.05%-74.81% of the mass P removal.The study showed that the nitrification/denitrification process and plant uptake process are major removal pathways for TN,while plant uptake is an effective removal pathway for TP.