Background. The mechanisms of the skin barrier impairment in patients with atopic dermatitis (AD) are still unknown and need further studying. Objective. We evaluated the skin of healthy subjects and of patients havin...Background. The mechanisms of the skin barrier impairment in patients with atopic dermatitis (AD) are still unknown and need further studying. Objective. We evaluated the skin of healthy subjects and of patients having atopic dermatitis with an instrument measuring electrical impedance and other noninvasive methods (transepidermal water loss, capacitance) and studied the effects of a new emollient [ProdermTM (Pro-QTM in the USA)]. Methods. After a 2-week washout period, we treated clinically noneczematous skin on the forearm of 24 patients with AD and assessed the effects with the noninvasive methods. 22 healthy subjects were used as controls. Results. The findings indicate that barrier function and hydration, and certain patterns of electrical impedance of AD skin are abnormal compared with normal skin. Moreover, there was an increase in hydration in patients’ skin after treatment and a reversal of certain impedance indices towards normal. Conclusions. Our findings demonstrate that the moisturizer we used changes some biophysical parameters when applied to atopic skin. In addition, a technique based on electrical impedance seems to give valuable information in atopic skin studies, especially the effects of moisturizers.展开更多
文摘Background. The mechanisms of the skin barrier impairment in patients with atopic dermatitis (AD) are still unknown and need further studying. Objective. We evaluated the skin of healthy subjects and of patients having atopic dermatitis with an instrument measuring electrical impedance and other noninvasive methods (transepidermal water loss, capacitance) and studied the effects of a new emollient [ProdermTM (Pro-QTM in the USA)]. Methods. After a 2-week washout period, we treated clinically noneczematous skin on the forearm of 24 patients with AD and assessed the effects with the noninvasive methods. 22 healthy subjects were used as controls. Results. The findings indicate that barrier function and hydration, and certain patterns of electrical impedance of AD skin are abnormal compared with normal skin. Moreover, there was an increase in hydration in patients’ skin after treatment and a reversal of certain impedance indices towards normal. Conclusions. Our findings demonstrate that the moisturizer we used changes some biophysical parameters when applied to atopic skin. In addition, a technique based on electrical impedance seems to give valuable information in atopic skin studies, especially the effects of moisturizers.