A simple way to prepare α- and β-CoMoO4 nanorods is reported in this paper. CoMoO4xH2O nanorod precursors were obtained using the microwave-assisted hydrothermal (MAH) method. By annealing the as-prepared CoMoO44xH2...A simple way to prepare α- and β-CoMoO4 nanorods is reported in this paper. CoMoO4xH2O nanorod precursors were obtained using the microwave-assisted hydrothermal (MAH) method. By annealing the as-prepared CoMoO44xH2O precursor at 600℃ for 10 min in a domestic microwave oven, α- and β-CoMoO4 nanorods were prepared. These powders were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform Raman microscopy and ultraviolet visible absorption spectroscopy (UV-vis spectra) as well as photoluminescence (PL) measurements. Based on the results, these materials revealed nanorod morphology. PL spectra obtained at room temperature for α- and β-CoMoO4 particles exhibited maximum components around the blue light emission. The results show that the domestic microwave oven has been successfully employed to obtain α- and β-CoMoO4 nanoparticles.展开更多
基金financial support of Brazilian agencies CNPq,FAPESP and CAPES.
文摘A simple way to prepare α- and β-CoMoO4 nanorods is reported in this paper. CoMoO4xH2O nanorod precursors were obtained using the microwave-assisted hydrothermal (MAH) method. By annealing the as-prepared CoMoO44xH2O precursor at 600℃ for 10 min in a domestic microwave oven, α- and β-CoMoO4 nanorods were prepared. These powders were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform Raman microscopy and ultraviolet visible absorption spectroscopy (UV-vis spectra) as well as photoluminescence (PL) measurements. Based on the results, these materials revealed nanorod morphology. PL spectra obtained at room temperature for α- and β-CoMoO4 particles exhibited maximum components around the blue light emission. The results show that the domestic microwave oven has been successfully employed to obtain α- and β-CoMoO4 nanoparticles.