Aiming to use lignocellulosic biomass as energy source, one of the process that may aggregate values is the densification process, which allows the production of bioenergy using solid fuels, mainly for reducing transp...Aiming to use lignocellulosic biomass as energy source, one of the process that may aggregate values is the densification process, which allows the production of bioenergy using solid fuels, mainly for reducing transportation costs. In this research, solid fuel from co-briquetting of wood residues from sawmill using commercial kraft lignin as binder was investigated. The effects of compression pressure (900, 1200 and 1500 PSI) and briquette formulation (varying wood and kraft lignin proportion) on the quality and characteristics of briquettes were evaluated. The main findings were that briquetting of wood residues with kraft lignin resulted in an improvement of bulk density, strength rupture modulus, low heating value (LHV) and high heating value (HHV). The briquettes using 4% and 6% of kraft lignin, and submitted to 1200 to 1500 PSI, presented higher bulk density and strength resistance, respectively. On the other hand, the heating values showed the highest results with the addition of 2% lignin at 900 PSI, being the legal range for additives in briquettes for many countries such as in European Union.展开更多
文摘Aiming to use lignocellulosic biomass as energy source, one of the process that may aggregate values is the densification process, which allows the production of bioenergy using solid fuels, mainly for reducing transportation costs. In this research, solid fuel from co-briquetting of wood residues from sawmill using commercial kraft lignin as binder was investigated. The effects of compression pressure (900, 1200 and 1500 PSI) and briquette formulation (varying wood and kraft lignin proportion) on the quality and characteristics of briquettes were evaluated. The main findings were that briquetting of wood residues with kraft lignin resulted in an improvement of bulk density, strength rupture modulus, low heating value (LHV) and high heating value (HHV). The briquettes using 4% and 6% of kraft lignin, and submitted to 1200 to 1500 PSI, presented higher bulk density and strength resistance, respectively. On the other hand, the heating values showed the highest results with the addition of 2% lignin at 900 PSI, being the legal range for additives in briquettes for many countries such as in European Union.