The capacitance-resistance model (CRM) is an alternative to conventional reservoir simulation. CRM, a simplification of complex numerical models, uses production and injection rates to infer a reservoir description....The capacitance-resistance model (CRM) is an alternative to conventional reservoir simulation. CRM, a simplification of complex numerical models, uses production and injection rates to infer a reservoir description. There is no prior geologic model. The principal output of CRM fitting is the fraction of injected fluid (usually water) that is produced at a producer at steady-state. These fractions are interwell connectivities. Interwell connectivities are fundamental information needed to manage waterfloods in oil reservoirs. The data-driven CRM is a fast tool to estimate these parameters in mature fields and allows one to make full use of the dynamic data available. This paper considers the problem of setting an upper bound on the uncertainty of interwell connectivities for linear-constrained models. Using analytical bounds and numerical simulations, we derive a consistent upper limit on the uncertainty of interwell connections that can be used to quantify the information content of a given dataset.展开更多
基金YPF for financial support and to the Center for Petroleum Asset Risk Management of the University of Texas at Austin for hospitality and an exciting research environment
文摘The capacitance-resistance model (CRM) is an alternative to conventional reservoir simulation. CRM, a simplification of complex numerical models, uses production and injection rates to infer a reservoir description. There is no prior geologic model. The principal output of CRM fitting is the fraction of injected fluid (usually water) that is produced at a producer at steady-state. These fractions are interwell connectivities. Interwell connectivities are fundamental information needed to manage waterfloods in oil reservoirs. The data-driven CRM is a fast tool to estimate these parameters in mature fields and allows one to make full use of the dynamic data available. This paper considers the problem of setting an upper bound on the uncertainty of interwell connectivities for linear-constrained models. Using analytical bounds and numerical simulations, we derive a consistent upper limit on the uncertainty of interwell connections that can be used to quantify the information content of a given dataset.