期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Wear Evaluation on Ni_3Al/MnS Composite Related to Metallurgical Processes 被引量:2
1
作者 Karin Gong LUO He-li +3 位作者 ZHOU Zhi-feng TIAN Zhi-ling lars nyborg LI Chang-hai 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第7期46-54,共9页
Iron alloyed Ni3Al with composition of Ni-18. 8Ab10. 7Fe-0. 5Mn-0. 5Ti-0. 2B in atom percent (NAC alloy) showed attractive tribological properties under unlubrication condition at room temperature. The alloy was pre... Iron alloyed Ni3Al with composition of Ni-18. 8Ab10. 7Fe-0. 5Mn-0. 5Ti-0. 2B in atom percent (NAC alloy) showed attractive tribological properties under unlubrication condition at room temperature. The alloy was prepared by hot isostatic pressing (HIP) process. The wear properties were associated with its intrinsic deformation mechanism. Unfortunately, the single phase NAC-alloy worked inadequately with its counterpart disk, and also showed a poor machinability. In the present work, NAC-alloy matrix composite with 6 % (volume percent) MnS particle addi- tion was studied to improve its wear behaviors and performance on machining. Two metallurgical processes of HIP and vacuum casting were applied to produce the testing materials. Pin-on-disk (POD) measurements were carried out at room temperature. A commercial vermicular graphite cast iron was selected as a reference material. The counter- part disk was made of a grey cast iron as liner material in ship engines. The contact pressures of 2.83 MPa and 5.66 MPa were normally applied in the tests. The investigation indicated that MnS particle addition in the NAC-alloy composites functions as an effective solid lubricant, and improved wear properties and machinability of the materials. Obvi- ously, as-cast NAC-alloy with in-situ formed MnS-phase was working more effectively with the counterpart, compa- ring to the HIPed NAC-alloy composite with MnS particles. At the high contact pressure of 5.66 MPa, the specific wear rate of the as-cast NAC-alloy composite was high. The phenomenon of the negative effect is mostly due to the brittle second NiAl phase as evidenced in the microstructure analysis. 展开更多
关键词 HIP processing friction coefficient specific wear rate intermetallics sliding wear CASTING MACHINABILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部