期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fekete-Gauss Spectral Elements for Incompressible Navier-Stokes Flows:The Two-Dimensional Case
1
作者 laura lazar Richard Pasquetti Francesca Rapetti 《Communications in Computational Physics》 SCIE 2013年第5期1309-1329,共21页
Spectral element methods on simplicial meshes,say TSEM,show both the advantages of spectral and finite element methods,i.e.,spectral accuracy and geometrical flexibility.We present a TSEM solver of the two-dimensional... Spectral element methods on simplicial meshes,say TSEM,show both the advantages of spectral and finite element methods,i.e.,spectral accuracy and geometrical flexibility.We present a TSEM solver of the two-dimensional(2D)incompressible Navier-Stokes equations,with possible extension to the 3D case.It uses a projection method in time and piecewise polynomial basis functions of arbitrary degree in space.The so-called Fekete-Gauss TSEM is employed,i.e.,Fekete(resp.Gauss)points of the triangle are used as interpolation(resp.quadrature)points.For the sake of consistency,isoparametric elements are used to approximate curved geometries.The resolution algorithm is based on an efficient Schur complement method,so that one only solves for the element boundary nodes.Moreover,the algebraic system is never assembled,therefore the number of degrees of freedom is not limiting.An accuracy study is carried out and results are provided for classical benchmarks:the driven cavity flow,the flow between eccentric cylinders and the flow past a cylinder. 展开更多
关键词 Spectral elements simplicial meshes Fekete-Gauss approximation Navier-Stokes equations projection methods domain decomposition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部