Most conventional aerosol neutralizers are based on radioactive sources, which are controlled by strict regulations restricting their handling, transport, and storage. The TSI 3087 soft X-ray (SXR) neutralizer circu...Most conventional aerosol neutralizers are based on radioactive sources, which are controlled by strict regulations restricting their handling, transport, and storage. The TSI 3087 soft X-ray (SXR) neutralizer circumvents these legal restrictions. The aim of the present work is to compare the performance of a standalone SXR aerosol neutralizer with that of conventional radioactive aerosol neutralizers based on 85Kr (TSI 3077) and 241Am (Grimm 5522) by performing field tests in a real environmental scenario. The results obtained when the SXR neutralizer was connected to a mobility particle sizer spectrometer (MPS), different from the device suggested by the manufacturer, were comparable with those obtained with the use of radioactive aerosol neutralizers. In changing the neutralizer, the particle number concentrations, measured with the MPS connected to the SXR neutralizer, almost remained within the 10% uncertainty bounds for the particle size interval 10-300 nm, when diffusion losses inside the SXR tube were considered. Based on our comparisons, the SXR neutralizer can be regarded as a standalone instrument that could solve the problems associated with legal restrictions on radioactive neutralizers and fulfil the need for a portable instrument for different field test purposes.展开更多
文摘Most conventional aerosol neutralizers are based on radioactive sources, which are controlled by strict regulations restricting their handling, transport, and storage. The TSI 3087 soft X-ray (SXR) neutralizer circumvents these legal restrictions. The aim of the present work is to compare the performance of a standalone SXR aerosol neutralizer with that of conventional radioactive aerosol neutralizers based on 85Kr (TSI 3077) and 241Am (Grimm 5522) by performing field tests in a real environmental scenario. The results obtained when the SXR neutralizer was connected to a mobility particle sizer spectrometer (MPS), different from the device suggested by the manufacturer, were comparable with those obtained with the use of radioactive aerosol neutralizers. In changing the neutralizer, the particle number concentrations, measured with the MPS connected to the SXR neutralizer, almost remained within the 10% uncertainty bounds for the particle size interval 10-300 nm, when diffusion losses inside the SXR tube were considered. Based on our comparisons, the SXR neutralizer can be regarded as a standalone instrument that could solve the problems associated with legal restrictions on radioactive neutralizers and fulfil the need for a portable instrument for different field test purposes.