Amphiphilic molecules adsorbed at the interface could control the orientation of liquid crystals(LCs)while LCs in turn could influence the distributions of amphiphilic molecules.The studies on the interactions between...Amphiphilic molecules adsorbed at the interface could control the orientation of liquid crystals(LCs)while LCs in turn could influence the distributions of amphiphilic molecules.The studies on the interactions between liquid crystals and amphiphilic molecules at the interface are important for the development of molecular sensors.In this paper,we demonstrate that the development of smectic LC ordering from isotropic at the LC/water interface could induce local high-density distributions of amphiphilic phospholipids.Mixtures of liquid crystals and phospholipids in chloroform are first emulsified in water.By fluorescently labeling the phospholipids adsorbed at the interface,their distributions are visualized under fluorescent confocal microscope.Interestingly,local high-density distributions of phospholipids showing a high fluorescent intensity are observed on the surface of LC droplets.Investigations on the correlation between phospholipid density,surface tension and smectic LC ordering suggest that when domains of smectic LC layers nucleate and grow from isotropic at the LC/water interface as chloroform slowly evaporates at room temperature,phospholipids transition from liquid-expanded to liquid-condensed phases in response to the smectic ordering,which induces a higher surface tension at the interface.The results will provide an important insight into the interactions between liquid crystals and amphiphilic molecules at the interface.展开更多
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LY20B060027)National Natural Science Foundation of China(No.21878258)+2 种基金the Spanish Ministry of Economy MINECO for a Juan de la Cierva-Incorporacion Fellowship(No.IJCI-2014-22461)supported by the National Science Foundation(No.DMR1310266)the Harvard Materials Research Science and Engineering Center(No.DMR-1420570)。
文摘Amphiphilic molecules adsorbed at the interface could control the orientation of liquid crystals(LCs)while LCs in turn could influence the distributions of amphiphilic molecules.The studies on the interactions between liquid crystals and amphiphilic molecules at the interface are important for the development of molecular sensors.In this paper,we demonstrate that the development of smectic LC ordering from isotropic at the LC/water interface could induce local high-density distributions of amphiphilic phospholipids.Mixtures of liquid crystals and phospholipids in chloroform are first emulsified in water.By fluorescently labeling the phospholipids adsorbed at the interface,their distributions are visualized under fluorescent confocal microscope.Interestingly,local high-density distributions of phospholipids showing a high fluorescent intensity are observed on the surface of LC droplets.Investigations on the correlation between phospholipid density,surface tension and smectic LC ordering suggest that when domains of smectic LC layers nucleate and grow from isotropic at the LC/water interface as chloroform slowly evaporates at room temperature,phospholipids transition from liquid-expanded to liquid-condensed phases in response to the smectic ordering,which induces a higher surface tension at the interface.The results will provide an important insight into the interactions between liquid crystals and amphiphilic molecules at the interface.