Previous studies have documented the occurrence of glyphosate-resistant (GR) goosegrass (Eleusine indica (L.) Gaertn.) and, in at least some cases, resistance is due to an altered target site. Research was perfo...Previous studies have documented the occurrence of glyphosate-resistant (GR) goosegrass (Eleusine indica (L.) Gaertn.) and, in at least some cases, resistance is due to an altered target site. Research was performed to determine if an altered target site was responsible for GR in a Tennessee, United States goosegrass population (TennGR). DNA sequencing revealed a mutation in TennGR plants conferring the Prol06Ser 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) substitution previously identified in other GR populations. F2 populations were derived from TennGR plants crossed with plants from a glyphosate-susceptible population (TennGS) and analyzed for their response to glyphosate and genotyped at the EPSPS locus. Plants from the F2 populations segregated 1:2:1 sensitive:intermediate:resistant in response to a selec- tive dose of glyphosate, and these responses co-segregated with the EPSPS genotypes (PP106, PS106, and SS106). To separately investigate the effect of the Prol06Ser substitution on GR, glyphosate dose-response curves and 50% effective dose (EDso) values were compared among the three genotypes and the two parental populations. The SS106 genotype was 3.4-fold resistant relative to the PP106 genotype, identical to the resistance level obtained when comparing the resistant and susceptible parental populations. We conclude that the mutation conferring a Prol06Ser EPSPS mutation is solely responsible for GR in the TennGR goosegrass population.展开更多
文摘Previous studies have documented the occurrence of glyphosate-resistant (GR) goosegrass (Eleusine indica (L.) Gaertn.) and, in at least some cases, resistance is due to an altered target site. Research was performed to determine if an altered target site was responsible for GR in a Tennessee, United States goosegrass population (TennGR). DNA sequencing revealed a mutation in TennGR plants conferring the Prol06Ser 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) substitution previously identified in other GR populations. F2 populations were derived from TennGR plants crossed with plants from a glyphosate-susceptible population (TennGS) and analyzed for their response to glyphosate and genotyped at the EPSPS locus. Plants from the F2 populations segregated 1:2:1 sensitive:intermediate:resistant in response to a selec- tive dose of glyphosate, and these responses co-segregated with the EPSPS genotypes (PP106, PS106, and SS106). To separately investigate the effect of the Prol06Ser substitution on GR, glyphosate dose-response curves and 50% effective dose (EDso) values were compared among the three genotypes and the two parental populations. The SS106 genotype was 3.4-fold resistant relative to the PP106 genotype, identical to the resistance level obtained when comparing the resistant and susceptible parental populations. We conclude that the mutation conferring a Prol06Ser EPSPS mutation is solely responsible for GR in the TennGR goosegrass population.