期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Positron Emission Tomography Imaging of Synaptic Dysfunction in Parkinson’s Disease
1
作者 Jiaqi Niu Yan Zhong +7 位作者 Chentao Jin Peili Cen Jing Wang Chunyi Cui le xue Xingyue Cui Mei Tian Hong Zhang 《Neuroscience Bulletin》 SCIE CAS CSCD 2024年第6期743-758,共16页
Parkinson’s disease(PD)is one of the most common neurodegenerative diseases with a complex pathogenesis.Aggregations formed by abnormal deposition of alpha-synuclein(αSyn)lead to synapse dysfunction of the dopamine ... Parkinson’s disease(PD)is one of the most common neurodegenerative diseases with a complex pathogenesis.Aggregations formed by abnormal deposition of alpha-synuclein(αSyn)lead to synapse dysfunction of the dopamine and non-dopamine systems.The loss of dopaminergic neurons and concomitant alterations in non-dopaminergic function in PD constitute its primary pathological manifestation.Positron emission tomography(PET),as a representative molecular imaging technique,enables the non-invasive visualization,characterization,and quantification of biological processes at cellular and molecular levels.Imaging synaptic function with PET would provide insights into the mechanisms underlying PD and facilitate the optimization of clinical management.In this review,we focus on the synaptic dysfunction associated with theαSyn pathology of PD,summarize various related targets and radiopharmaceuticals,and discuss applications and perspectives of PET imaging of synaptic dysfunction in PD. 展开更多
关键词 Parkinson’s disease Positron emission tomography Synapse dysfunction ALPHA-SYNUCLEIN Dopamine system Non-dopamine system
原文传递
Magneto-mechanical effect of magnetic microhydrogel for improvement of magnetic neuro-stimulation
2
作者 le xue Qing Ye +9 位作者 Linyuan Wu Dong Li Siyuan Bao Qingbo Lu Sha Liu Dongke Sun Zonghai Sheng Zhijun Zhang Ning Gu Jianfei Sun 《Nano Research》 SCIE EI CSCD 2023年第5期7393-7404,共12页
Superparamagnetic iron oxide(SPIO)nanoparticles play an important role in mediating precise and effective magnetic neurostimulation and can help overcome limitations related to penetration depth and spatial resolution... Superparamagnetic iron oxide(SPIO)nanoparticles play an important role in mediating precise and effective magnetic neurostimulation and can help overcome limitations related to penetration depth and spatial resolution.However,nanoparticles readily diffuse in vivo,decreasing the spatial resolution and activation efficiency.In this study,we employed a microfluidic means to fabricate injectable microhydrogels encapsulated with SPIO nanoparticles,which significantly improved the stability of nanoparticles,increased the magnetic properties,reinforced the stimulation effectivity.The fabricated magnetic microhydrogels were highly uniform in size and sphericity,enabling minimally invasive injection into brain tissue.The long-term residency in the cortex up to 22 weeks and the safety of brain tissue were shown using a mouse model.In addition,we quantitatively determined the magneto-mechanical force yielded by only one magnetic microhydrogel using a video-based method.The force was found to be within 7–8 pN under 10 Hz magnetic stimulation by both theoretical simulation and experimental measurement.Lastly,electrophysiological measurement of brain slices showed that the magnetic microhydrogels offer significant advantages in terms of neural activation relative to dissociative SPIO nanoparticles.A universal strategy is thus offered for performing magnetic neuro-stimulation with an improved prospect for biomedical translation. 展开更多
关键词 magnetic stimulation superparamagnetic iron oxide(SPIO)nanoparticles magnetic microhydrogel long-term residency magneto-mechanical effect
原文传递
Phenomic Imaging
3
作者 Lizhen Lan Kai Feng +11 位作者 Yudan Wu Wenbo Zhang Ling Wei Huiting Che le xue Yidan Gao Ji Tao Shufang Qian Wenzhao Cao Jun Zhang Chengyan Wang Mei Tian 《Phenomics》 2023年第6期597-612,共16页
Human phenomics is defned as the comprehensive collection of observable phenotypes and characteristics infuenced by a complex interplay among factors at multiple scales.These factors include genes,epigenetics at the m... Human phenomics is defned as the comprehensive collection of observable phenotypes and characteristics infuenced by a complex interplay among factors at multiple scales.These factors include genes,epigenetics at the microscopic level,organs,microbiome at the mesoscopic level,and diet and environmental exposures at the macroscopic level.“Phenomic imaging”utilizes various imaging techniques to visualize and measure anatomical structures,biological functions,metabolic processes,and biochemical activities across diferent scales,both in vivo and ex vivo.Unlike conventional medical imaging focused on disease diagnosis,phenomic imaging captures both normal and abnormal traits,facilitating detailed correlations between macro-and micro-phenotypes.This approach plays a crucial role in deciphering phenomes.This review provides an overview of diferent phenomic imaging modalities and their applications in human phenomics.Additionally,it explores the associations between phenomic imaging and other omics disciplines,including genomics,transcriptomics,proteomics,immunomics,and metabolomics.By integrating phenomic imaging with other omics data,such as genomics and metabolomics,a comprehensive understanding of biological systems can be achieved.This integration paves the way for the development of new therapeutic approaches and diagnostic tools. 展开更多
关键词 PHENOMICS IMAGING GENOMICS TRANSCRIPTOMICS PROTEOMICS IMMUNOMICS Metabolomics
原文传递
Protocol for Brain Magnetic Resonance Imaging and Extraction of Imaging‑Derived Phenotypes from the China Phenobank Project
4
作者 Chengyan Wang Zhang Shi +17 位作者 Yan Li xueqin Xia Xutong Kuang Shufang Qian le xue Lizhen Lan Yudan Wu Na Zhang Ji Tao Xumei Hu Wenzhao Cao Naying He Yike Guo Weibo Chen Jun Zhang Jingchun Luo He Wang Mei Tian 《Phenomics》 2023年第6期642-656,共15页
Imaging-derived phenotypes(IDPs)have been increasingly used in population-based cohort studies in recent years.As widely reported,magnetic resonance imaging(MRI)is an important imaging modality for assessing the anato... Imaging-derived phenotypes(IDPs)have been increasingly used in population-based cohort studies in recent years.As widely reported,magnetic resonance imaging(MRI)is an important imaging modality for assessing the anatomical structure and function of the brain with high resolution and excellent soft-tissue contrast.The purpose of this article was to describe the imaging protocol of the brain MRI in the China Phenobank Project(CHPP).Each participant underwent a 30-min brain MRI scan as part of a 2-h whole-body imaging protocol in CHPP.The brain imaging sequences included T1-magnetization that prepared rapid gradient echo,T2 fuid-attenuated inversion-recovery,magnetic resonance angiography,difusion MRI,and resting-state functional MRI.The detailed descriptions of image acquisition,interpretation,and post-processing were provided in this article.The measured IDPs included volumes of brain subregions,cerebral vessel geometrical parameters,microstructural tracts,and function connectivity metrics. 展开更多
关键词 Human phenome project Phenobank Brain magnetic resonance imaging Imaging derived phenotypes Standard protocol
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部