期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
SbHKT1;4, a member of the high‐affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na^+/K^+ balance under Na^+ stress 被引量:11
1
作者 Tian‐Tian Wang Zhi‐Jie Ren +5 位作者 Zhi‐Quan liu Xue Feng Rui‐Qi Guo Bao‐Guo li le‐gong li Hai‐Chun Jing 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2014年第3期315-332,共18页
In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. He... In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKTI;4, a member of the HKT gene family from Sorghum bicolor. Upon Na+ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na+/ K+ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na+ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K+, implicating that SbHKT1;4 may mediate K+ uptake in the presence of excessive Na+. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na+ and K+ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKTI;4 functions to maintain optimal Na+/K+ balance under Na+ stress to the breeding of salt-tolerant glycophytic crops is discussed. 展开更多
关键词 High-affinity potassium transporter (HKT) Na+/K+ ratio Na+ stress salt tolerance Sorghum bicolor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部