Van der Waals(VDW)heterostructures have attracted significant research interest due to their tunable interfacial properties and potential applications in many areas such as electronics,optoelectronic,and heterocatalys...Van der Waals(VDW)heterostructures have attracted significant research interest due to their tunable interfacial properties and potential applications in many areas such as electronics,optoelectronic,and heterocatalysis.In this work,the influences of interfacial defects on the electronic structures and photocatalytic properties of hBN/MX_(2)(M=Mo,W,and X=S,Se)are studied using density functional theory calculations.The results reveal that the band alignment of hBN/MX_(2) can be adjusted by introducing vacancies and atomic doping.The type-Ⅰband alignment of the host structure is maintained in the heterostructure with n-type doping in the hBN sublayer.Interestingly,the band alignment changed into the type-Ⅱheterostructrue due to V_(B) defect and p-type doping is introduced into the hBN sublayer.This can conduce to the separation of photo-generated electron-hole pairs at the interfaces,which is highly desired for heterostructure photocatalysis.In addition,two Z-type heterostructures including h BN(BeB)/MoS_(2),hBN(Be_(B))/MoSe_(2),and hBN(V_(N))/MoSe_(2)are achieved,showing the decreasing of band gap and ideal redox potential for water splitting.Our results reveal the possibility of engineering the interfacial and photocatalysis properties of hBN/MX_(2) heterostructures via interfacial defects.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3802400)the National Natural Science Foundation of China(Grant Nos.52161037,U20A20237,51871065,and 51971068)+4 种基金the Scientific Research and Technology Development Program of Guangxi Zhuang Autonmous Region Province,China(Grant Nos.AD19110037,AA19182014,AD17195073,and AA17202030-1)the Guangxi Natural Science Foundation,China(Grant Nos.2017JJB150085 and 2019GXNSFGA245005)the Innovation Project of GUET Graduate Education,China(Grant No.2022YCXS197)the Guangxi Bagui Scholar Foundation,Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials,Guangxi Advanced Functional Materials Foundation and Application Talents Small Highlands,ChinesischDeutsche Kooperationsgruppe,China(Grant No.GZ1528)the Guangxi Key Laboratory of Information Material,China(Grant No.201025-Z)。
文摘Van der Waals(VDW)heterostructures have attracted significant research interest due to their tunable interfacial properties and potential applications in many areas such as electronics,optoelectronic,and heterocatalysis.In this work,the influences of interfacial defects on the electronic structures and photocatalytic properties of hBN/MX_(2)(M=Mo,W,and X=S,Se)are studied using density functional theory calculations.The results reveal that the band alignment of hBN/MX_(2) can be adjusted by introducing vacancies and atomic doping.The type-Ⅰband alignment of the host structure is maintained in the heterostructure with n-type doping in the hBN sublayer.Interestingly,the band alignment changed into the type-Ⅱheterostructrue due to V_(B) defect and p-type doping is introduced into the hBN sublayer.This can conduce to the separation of photo-generated electron-hole pairs at the interfaces,which is highly desired for heterostructure photocatalysis.In addition,two Z-type heterostructures including h BN(BeB)/MoS_(2),hBN(Be_(B))/MoSe_(2),and hBN(V_(N))/MoSe_(2)are achieved,showing the decreasing of band gap and ideal redox potential for water splitting.Our results reveal the possibility of engineering the interfacial and photocatalysis properties of hBN/MX_(2) heterostructures via interfacial defects.