Moiré superlattices have emerged as a highly controllable quantum platform for exploration of various fascinating phenomena,such as Mott insulator states,ferroelectric order,unconventional superconductivity and o...Moiré superlattices have emerged as a highly controllable quantum platform for exploration of various fascinating phenomena,such as Mott insulator states,ferroelectric order,unconventional superconductivity and orbital ferromagnetism.Although remarkable progress has been achieved,current research in moiré physics has mainly focused on the single species properties,while the coupling between distinct moiré quantum phenomena remains elusive.Here we demonstrate,for the first time,the strong coupling between ferroelectricity and correlated states in a twisted quadrilayer MoS2moiré superlattice,where the twist angles are controlled in sequence to be ~57°,~0°,and ~-57°.Correlated insulator states are unambiguously established at moiré band filling factors v = 1,2,3 of twisted quadrilayer MoS_(2).Remarkably,ferroelectric order can occur at correlated insulator states and disappears quickly as the moiré band filling deviates from the integer fillings,providing smoking gun evidences of the coupling between ferroelectricity and correlated states.Our results demonstrate the coupling between different moiré quantum properties and will hold great promise for new moiré physics and applications.展开更多
Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor app...Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH~, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 pprn-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province,China (Grant No.2020B0101340001)the National Key Research and Development Program of China (Grant Nos.2021YFA1202900 and 2020YFA0309600)+4 种基金the National Science Foundation of China (Grant Nos.61888102,11834017,1207441,and 12274447)the Strategic Priority Research Program of CAS(Grant Nos.XDB30000000 and XDB33000000)the supports from the Elemental Strategy Initiative conducted by the MEXT,Japan(Grant No.JPMXP0112101001)JSPS KAKENHI(Grant Nos.19H05790,20H00354,and 21H05233)A3 Foresight by JSPS。
文摘Moiré superlattices have emerged as a highly controllable quantum platform for exploration of various fascinating phenomena,such as Mott insulator states,ferroelectric order,unconventional superconductivity and orbital ferromagnetism.Although remarkable progress has been achieved,current research in moiré physics has mainly focused on the single species properties,while the coupling between distinct moiré quantum phenomena remains elusive.Here we demonstrate,for the first time,the strong coupling between ferroelectricity and correlated states in a twisted quadrilayer MoS2moiré superlattice,where the twist angles are controlled in sequence to be ~57°,~0°,and ~-57°.Correlated insulator states are unambiguously established at moiré band filling factors v = 1,2,3 of twisted quadrilayer MoS_(2).Remarkably,ferroelectric order can occur at correlated insulator states and disappears quickly as the moiré band filling deviates from the integer fillings,providing smoking gun evidences of the coupling between ferroelectricity and correlated states.Our results demonstrate the coupling between different moiré quantum properties and will hold great promise for new moiré physics and applications.
文摘Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH~, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 pprn-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety.