Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these ...Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these environments,Virtual Machines(VMs)are employed to manage workloads,with their optimal placement on Physical Machines(PMs)being crucial for maximizing resource utilization.However,achieving high resource utilization in cloud data centers remains a challenge due to multiple conflicting objectives,particularly in scenarios involving inter-VM communication dependencies,which are common in smart manufacturing applications.This manuscript presents an AI-driven approach utilizing a modified Multi-Objective Particle Swarm Optimization(MOPSO)algorithm,enhanced with improved mutation and crossover operators,to efficiently place VMs.This approach aims to minimize the impact on networking devices during inter-VM communication while enhancing resource utilization.The proposed algorithm is benchmarked against other multi-objective algorithms,such as Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),demonstrating its superiority in optimizing resource allocation in cloud-based environments for smart manufacturing.展开更多
基金funded by Researchers Supporting Project Number(RSPD2025R 947),King Saud University,Riyadh,Saudi Arabia.
文摘Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these environments,Virtual Machines(VMs)are employed to manage workloads,with their optimal placement on Physical Machines(PMs)being crucial for maximizing resource utilization.However,achieving high resource utilization in cloud data centers remains a challenge due to multiple conflicting objectives,particularly in scenarios involving inter-VM communication dependencies,which are common in smart manufacturing applications.This manuscript presents an AI-driven approach utilizing a modified Multi-Objective Particle Swarm Optimization(MOPSO)algorithm,enhanced with improved mutation and crossover operators,to efficiently place VMs.This approach aims to minimize the impact on networking devices during inter-VM communication while enhancing resource utilization.The proposed algorithm is benchmarked against other multi-objective algorithms,such as Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),demonstrating its superiority in optimizing resource allocation in cloud-based environments for smart manufacturing.