Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the...Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT.展开更多
By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the ...By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the zero-fieldμSR spectra down to the lowest measured temperature reveal no long-range magnetic order.In LaNiO_(2),short-range spin correlations appear below T=150 K,and spins fully freeze below T∼10 K.NdNiO_(2)exhibits a more complex spin dynamics driven by the Nd 4f and Ni3d electron spin fluctuations.Further,it shows features suggesting the proximity to a spin-glass state occurring below T=5 K.In both compounds,the spin behavior with temperature is further confirmed by longitudinal-field μSR measurements.These results provide new insight into the magnetism of the parent compounds of the superconducting nickelates,crucial to understanding the microscopic origin of their superconductivity.展开更多
The high critical electric field strength of Ga_(2)O_(3)enables higher operating voltages and reduced switching losses in power electronic devices.Suitable Schottky metals and epitaxial films are essential for further...The high critical electric field strength of Ga_(2)O_(3)enables higher operating voltages and reduced switching losses in power electronic devices.Suitable Schottky metals and epitaxial films are essential for further enhancing device performance.In this work,the fabrication of vertical Ga_(2)O_(3)barrier diodes with three different barrier metals was carried out on an n--Ga_(2)O_(3)homogeneous epitaxial film deposited on an n+-β-Ga_(2)O_(3)substrate by metal-organic chemical vapor deposition,excluding the use of edge terminals.The ideal factor,barrier height,specific on-resistance,and breakdown voltage characteristics of all devices were investigated at room temperature.In addition,the vertical Ga_(2)O_(3)barrier diodes achieve a higher breakdown volt-age and exhibit a reverse leakage as low as 4.82×10^(-8)A/cm^(2)by constructing a NiO/Ga_(2)O_(3)heterojunction.Therefore,Ga_(2)O_(3)power detailed investigations into Schottky barrier metal and NiO/Ga_(2)O_(3)heterojunction of Ga_(2)O_(3)homogeneous epitaxial films are of great research potential in high-efficiency,high-power,and high-reliability applications.展开更多
Due to the non-standardization and complexity of the farmland environment,it is always a huge challenge for tractors to achieve fully autonomy(work at Self-driving mode)all the time in agricultural industry.Whereas,wh...Due to the non-standardization and complexity of the farmland environment,it is always a huge challenge for tractors to achieve fully autonomy(work at Self-driving mode)all the time in agricultural industry.Whereas,when tractors work in the Tele-driving(or Remote driving)mode,the operators are prone to fatigue because they need to concentrate for long periods of time.In response to these,a dual-mode control strategy was proposed to integrate the advantages of both approaches,i.e.,by combing Self-driving at most of the time with Tele-driving under special(complex and hazardous)conditions through switching control method.First,the state switcher was proposed,which is used for smooth switching the driving modes according to different working states of a tractor.Then,the state switching control law and the corresponding subsystem tracking controllers were designed.Finally,the effectiveness and superiority of the dualmode control method were evaluated via actual experimental testing of a tractor whose results show that the proposed control method can switch smoothly,stably,and efficiently between the two driving modes automatically.The average control accuracy has been improved by 20%and 15%respectively,compared to the conventional Tele-driving control and Self-driving control with low-precision navigation.In conclusion,the proposed dualmode control method can not only satisfy the operation in the complex and changeable farmland environment,but also free drivers from high-intensity and fatiguing work.This provides a perfect application solution and theoretical support for the intelligentization of unmanned farm agricultural machinery with high safety and reliability.展开更多
The speed and pace of the transmission of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2;also referred to as novel Coronavirus 2019 and COVID-19)have resulted in a global pandemic,with significant health,f...The speed and pace of the transmission of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2;also referred to as novel Coronavirus 2019 and COVID-19)have resulted in a global pandemic,with significant health,financial,political,and other implications.There have been various attempts to manage COVID-19 and other pandemics using technologies such as Internet of Things(IoT)and 5G/6G communications.However,we also need to ensure that IoT devices used to facilitate COVID-19 monitoring and treatment(e.g.,medical IoT devices)are secured,as the compromise of such devices can have significant consequences(e.g.,life-threatening risks to COVID-19 patients).Hence,in this paper we comprehensively survey existing IoT-related solutions,potential security and privacy risks and their requirements.For example,we classify existing security and privacy solutions into five categories,namely:authentication and access control solutions,key management and cryptography solutions,blockchain-based solutions,intrusion detection systems,and privacy-preserving solutions.In each category,we identify the associated challenges.We also identify a number of recommendations to inform future research.展开更多
This paper presents a comprehensive review of emerging technologies for the internet of things(IoT)-based smart agriculture.We begin by summarizing the existing surveys and describing emergent technologies for the agr...This paper presents a comprehensive review of emerging technologies for the internet of things(IoT)-based smart agriculture.We begin by summarizing the existing surveys and describing emergent technologies for the agricultural IoT,such as unmanned aerial vehicles,wireless technologies,open-source IoT platforms,software defined networking(SDN),network function virtualization(NFV)technologies,cloud/fog computing,and middleware platforms.We also provide a classification of IoT applications for smart agriculture into seven categories:including smart monitoring,smart water management,agrochemicals applications,disease management,smart harvesting,supply chain management,and smart agricultural practices.Moreover,we provide a taxonomy and a side-by-side comparison of the state-ofthe-art methods toward supply chain management based on the blockchain technology for agricultural IoTs.Furthermore,we present real projects that use most of the aforementioned technologies,which demonstrate their great performance in the field of smart agriculture.Finally,we highlight open research challenges and discuss possible future research directions for agricultural IoTs.展开更多
With the deep combination of both modern information technology and traditional agriculture,the era of agriculture 4.0,which takes the form of smart agriculture,has come.Smart agriculture provides solutions for agricu...With the deep combination of both modern information technology and traditional agriculture,the era of agriculture 4.0,which takes the form of smart agriculture,has come.Smart agriculture provides solutions for agricultural intelligence and automation.However,information security issues cannot be ignored with the development of agriculture brought by modern information technology.In this paper,three typical development modes of smart agriculture(precision agriculture,facility agriculture,and order agriculture)are presented.Then,7 key technologies and 11 key applications are derived from the above modes.Based on the above technologies and applications,6 security and privacy countermeasures(authentication and access control,privacy-preserving,blockchain-based solutions for data integrity,cryptography and key management,physical countermeasures,and intrusion detection systems)are summarized and discussed.Moreover,the security challenges of smart agriculture are analyzed and organized into two aspects:1)agricultural production,and 2)information technology.Most current research projects have not taken agricultural equipment as potential security threats.Therefore,we did some additional experiments based on solar insecticidal lamps Internet of Things,and the results indicate that agricultural equipment has an impact on agricultural security.Finally,more technologies(5 G communication,fog computing,Internet of Everything,renewable energy management system,software defined network,virtual reality,augmented reality,and cyber security datasets for smart agriculture)are described as the future research directions of smart agriculture.展开更多
The tea geometridEctropis obliquais one of the most serious leaf-feeding insect pests in tea (Camelia sinensis) in East Asia. Although several volatile chemicals emitted from tea plants have been reported to be attr...The tea geometridEctropis obliquais one of the most serious leaf-feeding insect pests in tea (Camelia sinensis) in East Asia. Although several volatile chemicals emitted from tea plants have been reported to be attractive toE. obliqua moths, no synthetic attractants for E. obliqua moths have been developed. By measuring the behavioral responses of the moth to a series of chemicals in the lab, we found that a blend containing a ternary mixture containing (Z)-3-hexenal, (Z)-3-hexenyl hexanoate and benzyl alcohol clearly attracted toE. obliqua moths of both sex and that (Z)-3-hexenyl acetate could enhance the attractiveness of the ternary blend. Moreover, we found that the volatiles emitted from the plant-E. obliqua larva com-plex have the same attractiveness as: 1) the blend of volatiles containing the ternary mixture and 2) the blend containing (Z)-3-hexenyl acetate plus the ternary mixture to both male and female moths. In a ifeld bioassay, more male moths were observed on traps that were baited with the blend containing (Z)-3-hexenyl acetate plus the ternary mixture than on control traps. Our study raises the tantalizing possibility that synthetic blends could be deployed as attractants for pests in the ifeld.展开更多
AIM: To investigate mitochondrial factors associated with Leber hereditary optic neuropathy (LHON) through complete sequencing and analysis of the mitochondrial genome of Chinese patients with this disease. METHODS: T...AIM: To investigate mitochondrial factors associated with Leber hereditary optic neuropathy (LHON) through complete sequencing and analysis of the mitochondrial genome of Chinese patients with this disease. METHODS: Two unrelated southern Chinese families with LHON and 10 matched healthy controls were recruited, and their entire mitochondrial DNA (mtDNA) was amplified and sequenced with the universal M13 primer. Then DNA sequence analysis and variation identification were performed by DNAssist and Chromas 2 software and compared with authoritative databases such as Mitomap. RESULTS: Mutational analysis of mtDNA in these two Chinese pedigrees revealed one common LHON-associated mutation, G11778A (Arg -> His), in the MT-ND4 gene. In addition, there were two secondary mutations in Pedigree 1: C34971 (Ala -> Val), and C3571T (Leu -> Phe) in the MT-ND1 gene, which have not been reported; and two secondary mutations occurred in Pedigree 2: A10398G (Thr -> Ala) in the MT-ND3 gene, and T14502C (Ile -> Val) in the MT-ND6 gene. Three polymorphisms, A73G, G94A and A263G in the mtDNA control region, were also found. CONCLUSION: Our study confirmed that the known MT-ND4* G11778A mutation is the most significant cause of LHON. The C3497T and C3571T mutations in Pedigree 1 were also both at hot-spots of MT-ND1; they may affect the respiratory chain in coordination with the primary mutation G11778A. In Pedigree 2, the two secondary mutations A10398G of MT-ND3 and T14502C of MT-ND6 may influence mitochondrial respiratory complex I, leading to the mitochondrial respiratory chain dysfunction which results in optic atrophy together with G11778A. Therefore, not only the common primary LHON mutation is responsible for the visual atrophy, but other secondary mtDNA mutations should also be considered when giving genetic counseling.展开更多
基金supported in part by the National Natural Science Foundation of China (62072248, 62072247)the Jiangsu Agriculture Science and Technology Innovation Fund (CX(21)3060)。
文摘Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1402203)the National Natural Science Foundation of China(Grant No.12174065)supported by the Shenzhen Fundamental Research Program(Grant Nos.JCYJ20220818100405013 and JCYJ20230807093204010)。
文摘By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the zero-fieldμSR spectra down to the lowest measured temperature reveal no long-range magnetic order.In LaNiO_(2),short-range spin correlations appear below T=150 K,and spins fully freeze below T∼10 K.NdNiO_(2)exhibits a more complex spin dynamics driven by the Nd 4f and Ni3d electron spin fluctuations.Further,it shows features suggesting the proximity to a spin-glass state occurring below T=5 K.In both compounds,the spin behavior with temperature is further confirmed by longitudinal-field μSR measurements.These results provide new insight into the magnetism of the parent compounds of the superconducting nickelates,crucial to understanding the microscopic origin of their superconductivity.
基金supported by BUPT Excellent Ph.D. Students Foundation (CX2023301)in part by the National Natural Science Foundation of China (62204019)
文摘The high critical electric field strength of Ga_(2)O_(3)enables higher operating voltages and reduced switching losses in power electronic devices.Suitable Schottky metals and epitaxial films are essential for further enhancing device performance.In this work,the fabrication of vertical Ga_(2)O_(3)barrier diodes with three different barrier metals was carried out on an n--Ga_(2)O_(3)homogeneous epitaxial film deposited on an n+-β-Ga_(2)O_(3)substrate by metal-organic chemical vapor deposition,excluding the use of edge terminals.The ideal factor,barrier height,specific on-resistance,and breakdown voltage characteristics of all devices were investigated at room temperature.In addition,the vertical Ga_(2)O_(3)barrier diodes achieve a higher breakdown volt-age and exhibit a reverse leakage as low as 4.82×10^(-8)A/cm^(2)by constructing a NiO/Ga_(2)O_(3)heterojunction.Therefore,Ga_(2)O_(3)power detailed investigations into Schottky barrier metal and NiO/Ga_(2)O_(3)heterojunction of Ga_(2)O_(3)homogeneous epitaxial films are of great research potential in high-efficiency,high-power,and high-reliability applications.
基金supported in part by the Independent Innovation Project of Agricultural Science and Technology of Jiangsu Province(CX(20)3068)Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project of Jiangsu Province(NJ2021-37)+1 种基金National Foreign Experts Program of China(G2021145010L)Science and Technology Project of Suzhou City(SNG2020039)。
文摘Due to the non-standardization and complexity of the farmland environment,it is always a huge challenge for tractors to achieve fully autonomy(work at Self-driving mode)all the time in agricultural industry.Whereas,when tractors work in the Tele-driving(or Remote driving)mode,the operators are prone to fatigue because they need to concentrate for long periods of time.In response to these,a dual-mode control strategy was proposed to integrate the advantages of both approaches,i.e.,by combing Self-driving at most of the time with Tele-driving under special(complex and hazardous)conditions through switching control method.First,the state switcher was proposed,which is used for smooth switching the driving modes according to different working states of a tractor.Then,the state switching control law and the corresponding subsystem tracking controllers were designed.Finally,the effectiveness and superiority of the dualmode control method were evaluated via actual experimental testing of a tractor whose results show that the proposed control method can switch smoothly,stably,and efficiently between the two driving modes automatically.The average control accuracy has been improved by 20%and 15%respectively,compared to the conventional Tele-driving control and Self-driving control with low-precision navigation.In conclusion,the proposed dualmode control method can not only satisfy the operation in the complex and changeable farmland environment,but also free drivers from high-intensity and fatiguing work.This provides a perfect application solution and theoretical support for the intelligentization of unmanned farm agricultural machinery with high safety and reliability.
基金supported in part by the Research Start-Up Fund for Talent Researcher of Nanjing Agricultural University(77H0603)。
文摘The speed and pace of the transmission of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2;also referred to as novel Coronavirus 2019 and COVID-19)have resulted in a global pandemic,with significant health,financial,political,and other implications.There have been various attempts to manage COVID-19 and other pandemics using technologies such as Internet of Things(IoT)and 5G/6G communications.However,we also need to ensure that IoT devices used to facilitate COVID-19 monitoring and treatment(e.g.,medical IoT devices)are secured,as the compromise of such devices can have significant consequences(e.g.,life-threatening risks to COVID-19 patients).Hence,in this paper we comprehensively survey existing IoT-related solutions,potential security and privacy risks and their requirements.For example,we classify existing security and privacy solutions into five categories,namely:authentication and access control solutions,key management and cryptography solutions,blockchain-based solutions,intrusion detection systems,and privacy-preserving solutions.In each category,we identify the associated challenges.We also identify a number of recommendations to inform future research.
基金supported in part by the Research Start-Up Fund for Talent Researcher of Nanjing Agricultural University(77H0603)in part by the National Natural Science Foundation of China(62072248)。
文摘This paper presents a comprehensive review of emerging technologies for the internet of things(IoT)-based smart agriculture.We begin by summarizing the existing surveys and describing emergent technologies for the agricultural IoT,such as unmanned aerial vehicles,wireless technologies,open-source IoT platforms,software defined networking(SDN),network function virtualization(NFV)technologies,cloud/fog computing,and middleware platforms.We also provide a classification of IoT applications for smart agriculture into seven categories:including smart monitoring,smart water management,agrochemicals applications,disease management,smart harvesting,supply chain management,and smart agricultural practices.Moreover,we provide a taxonomy and a side-by-side comparison of the state-ofthe-art methods toward supply chain management based on the blockchain technology for agricultural IoTs.Furthermore,we present real projects that use most of the aforementioned technologies,which demonstrate their great performance in the field of smart agriculture.Finally,we highlight open research challenges and discuss possible future research directions for agricultural IoTs.
基金supported in part by the National Natural Science Foundation of China(62072248,61902188)in part by China Postdoctoral Science Foundation(2019M651713)。
文摘With the deep combination of both modern information technology and traditional agriculture,the era of agriculture 4.0,which takes the form of smart agriculture,has come.Smart agriculture provides solutions for agricultural intelligence and automation.However,information security issues cannot be ignored with the development of agriculture brought by modern information technology.In this paper,three typical development modes of smart agriculture(precision agriculture,facility agriculture,and order agriculture)are presented.Then,7 key technologies and 11 key applications are derived from the above modes.Based on the above technologies and applications,6 security and privacy countermeasures(authentication and access control,privacy-preserving,blockchain-based solutions for data integrity,cryptography and key management,physical countermeasures,and intrusion detection systems)are summarized and discussed.Moreover,the security challenges of smart agriculture are analyzed and organized into two aspects:1)agricultural production,and 2)information technology.Most current research projects have not taken agricultural equipment as potential security threats.Therefore,we did some additional experiments based on solar insecticidal lamps Internet of Things,and the results indicate that agricultural equipment has an impact on agricultural security.Finally,more technologies(5 G communication,fog computing,Internet of Everything,renewable energy management system,software defined network,virtual reality,augmented reality,and cyber security datasets for smart agriculture)are described as the future research directions of smart agriculture.
基金sponsored by the Special Fund for Agro-scientific Research in the Public Interest, China (201403030)the National Basic Research Program of China (2012CB114104)+1 种基金the National Natural Science Foundation of China (31272053)the Division of Science and Technology of Zhejiang Province, China (2015C32081)
文摘The tea geometridEctropis obliquais one of the most serious leaf-feeding insect pests in tea (Camelia sinensis) in East Asia. Although several volatile chemicals emitted from tea plants have been reported to be attractive toE. obliqua moths, no synthetic attractants for E. obliqua moths have been developed. By measuring the behavioral responses of the moth to a series of chemicals in the lab, we found that a blend containing a ternary mixture containing (Z)-3-hexenal, (Z)-3-hexenyl hexanoate and benzyl alcohol clearly attracted toE. obliqua moths of both sex and that (Z)-3-hexenyl acetate could enhance the attractiveness of the ternary blend. Moreover, we found that the volatiles emitted from the plant-E. obliqua larva com-plex have the same attractiveness as: 1) the blend of volatiles containing the ternary mixture and 2) the blend containing (Z)-3-hexenyl acetate plus the ternary mixture to both male and female moths. In a ifeld bioassay, more male moths were observed on traps that were baited with the blend containing (Z)-3-hexenyl acetate plus the ternary mixture than on control traps. Our study raises the tantalizing possibility that synthetic blends could be deployed as attractants for pests in the ifeld.
基金Supported by the National Natural Science Foundation of China(No.J0710043)
文摘AIM: To investigate mitochondrial factors associated with Leber hereditary optic neuropathy (LHON) through complete sequencing and analysis of the mitochondrial genome of Chinese patients with this disease. METHODS: Two unrelated southern Chinese families with LHON and 10 matched healthy controls were recruited, and their entire mitochondrial DNA (mtDNA) was amplified and sequenced with the universal M13 primer. Then DNA sequence analysis and variation identification were performed by DNAssist and Chromas 2 software and compared with authoritative databases such as Mitomap. RESULTS: Mutational analysis of mtDNA in these two Chinese pedigrees revealed one common LHON-associated mutation, G11778A (Arg -> His), in the MT-ND4 gene. In addition, there were two secondary mutations in Pedigree 1: C34971 (Ala -> Val), and C3571T (Leu -> Phe) in the MT-ND1 gene, which have not been reported; and two secondary mutations occurred in Pedigree 2: A10398G (Thr -> Ala) in the MT-ND3 gene, and T14502C (Ile -> Val) in the MT-ND6 gene. Three polymorphisms, A73G, G94A and A263G in the mtDNA control region, were also found. CONCLUSION: Our study confirmed that the known MT-ND4* G11778A mutation is the most significant cause of LHON. The C3497T and C3571T mutations in Pedigree 1 were also both at hot-spots of MT-ND1; they may affect the respiratory chain in coordination with the primary mutation G11778A. In Pedigree 2, the two secondary mutations A10398G of MT-ND3 and T14502C of MT-ND6 may influence mitochondrial respiratory complex I, leading to the mitochondrial respiratory chain dysfunction which results in optic atrophy together with G11778A. Therefore, not only the common primary LHON mutation is responsible for the visual atrophy, but other secondary mtDNA mutations should also be considered when giving genetic counseling.