It is very difficult to evaluate the productivity of horizontal wells in fault block reservoirs due to the influence of fault sealing.On the basis of the method of images and source-sink theory,a semianalytical model ...It is very difficult to evaluate the productivity of horizontal wells in fault block reservoirs due to the influence of fault sealing.On the basis of the method of images and source-sink theory,a semianalytical model coupling reservoir and finite conductivity horizontal wellbore flow dynamics was built,in which the influence of fault sealing was taken into account.The distribution of wellbore flow and radial inflow profiles along the horizontal interval were also obtained.The impact of the distance between the horizontal well and the fault on the well productivity was quantitatively analyzed.Based on this analysis,the optimal distance between the horizontal well and the fault in banded fault block reservoirs could be determined.According to the field application,the relative error calculated by the model proposed in this paper is within ±15%.It is an effective evaluation method for the productivity of horizontal wells in fault block reservoirs.The productivity of the horizontal well increases logarithmically as the distance between the horizontal well and the fault increases.The optimal distance between the horizontal well and the fault is 0.25-0.3 times the horizontal well length.展开更多
Based on the optimal control theory and taking the production law of reservoirs with strong natural aquifer as the basic constraint, a mathematical model of liquid production for such reservoirs in the later stage of ...Based on the optimal control theory and taking the production law of reservoirs with strong natural aquifer as the basic constraint, a mathematical model of liquid production for such reservoirs in the later stage of development is established. The model is solved by improved simultaneous perturbation stochastic approximation algorithm(SPSA), and an automatic optimization software for liquid production is developed. This model avoids the disadvantage of traditional optimization methods that only focus on the maximum value of mathematics but ignore the production law of oilfield. It has the advantages of high efficiency of calculation, short period and automatic optimization. It can satisfy the automatic optimization of liquid production in later stage of oilfield development. The software was applied in the oilfield development of D oilfield, Ecuador in South America, and realized the automatic optimization of liquid production in the later stage of oilfield development.展开更多
基金support from the National Science & Technology Major Project of China (No. 2009ZX05009-006)the China National Offshore Oil Corporation (CNOOC)
文摘It is very difficult to evaluate the productivity of horizontal wells in fault block reservoirs due to the influence of fault sealing.On the basis of the method of images and source-sink theory,a semianalytical model coupling reservoir and finite conductivity horizontal wellbore flow dynamics was built,in which the influence of fault sealing was taken into account.The distribution of wellbore flow and radial inflow profiles along the horizontal interval were also obtained.The impact of the distance between the horizontal well and the fault on the well productivity was quantitatively analyzed.Based on this analysis,the optimal distance between the horizontal well and the fault in banded fault block reservoirs could be determined.According to the field application,the relative error calculated by the model proposed in this paper is within ±15%.It is an effective evaluation method for the productivity of horizontal wells in fault block reservoirs.The productivity of the horizontal well increases logarithmically as the distance between the horizontal well and the fault increases.The optimal distance between the horizontal well and the fault is 0.25-0.3 times the horizontal well length.
基金Supported by the China National Science and Technology Major Project(2016ZX05031-001)
文摘Based on the optimal control theory and taking the production law of reservoirs with strong natural aquifer as the basic constraint, a mathematical model of liquid production for such reservoirs in the later stage of development is established. The model is solved by improved simultaneous perturbation stochastic approximation algorithm(SPSA), and an automatic optimization software for liquid production is developed. This model avoids the disadvantage of traditional optimization methods that only focus on the maximum value of mathematics but ignore the production law of oilfield. It has the advantages of high efficiency of calculation, short period and automatic optimization. It can satisfy the automatic optimization of liquid production in later stage of oilfield development. The software was applied in the oilfield development of D oilfield, Ecuador in South America, and realized the automatic optimization of liquid production in the later stage of oilfield development.