Introducing heavy halogen atoms into organic small molecules is a practical strategy for efficient singlet oxygen(^(1)O_(2))generation.Generally,bromine or iodine atoms are introduced on the aza-borondipyrromethene(az...Introducing heavy halogen atoms into organic small molecules is a practical strategy for efficient singlet oxygen(^(1)O_(2))generation.Generally,bromine or iodine atoms are introduced on the aza-borondipyrromethene(aza-BODIPY)core,rather than on the periphery aryl rings for efficient~1O_(2) generation.Herein,an aza-BODIPY dye NBDPBr with unexpected bromination on the periphery aryl rings was synthesized for photoacoustic(PA)imaging-guided synergistic photothermal therapy(PTT)and photodynamic therapy(PDT)in tumor cells.Owing to unexcepted bromination at the periphery aryl rings,NBDPBr demonstrated an outstanding singlet oxygen quantum yield(Φ_(Δ))of 66% which was superior to similar brominated photosensitizers previously reported.After encapsulation with amphiphilic polymer F-127,hydrophilic NBDPBr nanoparticles(NPs)were fabricated and exhibited an excellent photothermal conversion efficiency(η)of 43.0% under 660 nm photoirradiation.In vivo PA imaging results demonstrated that NBDPBr NPs could specifically accumulate at tumor sites and realized the maximum tumor retention at 7 h post-injection.All the in vitro and in vivo results indicated the significant potence of NBDPBr with unexpected bis-bromination for PA imaging-guided synergetic PDT/PTT.展开更多
As significant biocatalysts,natural enzymes have exhibited a vast range of applications in biocatalytic reactions.However,the“always-on”natural enzyme activity is not beneficial for the regulation of catalytic proce...As significant biocatalysts,natural enzymes have exhibited a vast range of applications in biocatalytic reactions.However,the“always-on”natural enzyme activity is not beneficial for the regulation of catalytic processes,which limits their bio-applications.Recently,it has been extensively reported that various organic artificial enzymes exhibit prominent absorption and controlled activity under illumination,which not only creates a series of light-responsive catalytic platforms but also plays a key role in biosensing and biomedical research.To provide novel ideas for the design of artificial enzymes,we conduct this review to highlight the recent progress of light-responsive organic artificial enzymes(LOA-Enz).The specific photoresponse mechanism and various bio-applications of LOA-Enz are also presented in detail.Furthermore,the remaining challenges and future perspectives in this field are discussed.展开更多
基金supported by NSF of Jiangsu Province(No.BK20200092)。
文摘Introducing heavy halogen atoms into organic small molecules is a practical strategy for efficient singlet oxygen(^(1)O_(2))generation.Generally,bromine or iodine atoms are introduced on the aza-borondipyrromethene(aza-BODIPY)core,rather than on the periphery aryl rings for efficient~1O_(2) generation.Herein,an aza-BODIPY dye NBDPBr with unexpected bromination on the periphery aryl rings was synthesized for photoacoustic(PA)imaging-guided synergistic photothermal therapy(PTT)and photodynamic therapy(PDT)in tumor cells.Owing to unexcepted bromination at the periphery aryl rings,NBDPBr demonstrated an outstanding singlet oxygen quantum yield(Φ_(Δ))of 66% which was superior to similar brominated photosensitizers previously reported.After encapsulation with amphiphilic polymer F-127,hydrophilic NBDPBr nanoparticles(NPs)were fabricated and exhibited an excellent photothermal conversion efficiency(η)of 43.0% under 660 nm photoirradiation.In vivo PA imaging results demonstrated that NBDPBr NPs could specifically accumulate at tumor sites and realized the maximum tumor retention at 7 h post-injection.All the in vitro and in vivo results indicated the significant potence of NBDPBr with unexpected bis-bromination for PA imaging-guided synergetic PDT/PTT.
基金supported by the National Key Research and Development(R&D)Program of China(No.2020YFA0709900)the National Natural Science Foundation of China(Nos.62120106002 and 22175089)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20200092)the Natural Science Foundation of Ningbo(No.202003N40448)Research Innovation Plan for Graduate Students in Jiangsu Province(No.SJCX21_0473)“Taishan scholars”construction special fund of Shandong Province.
文摘As significant biocatalysts,natural enzymes have exhibited a vast range of applications in biocatalytic reactions.However,the“always-on”natural enzyme activity is not beneficial for the regulation of catalytic processes,which limits their bio-applications.Recently,it has been extensively reported that various organic artificial enzymes exhibit prominent absorption and controlled activity under illumination,which not only creates a series of light-responsive catalytic platforms but also plays a key role in biosensing and biomedical research.To provide novel ideas for the design of artificial enzymes,we conduct this review to highlight the recent progress of light-responsive organic artificial enzymes(LOA-Enz).The specific photoresponse mechanism and various bio-applications of LOA-Enz are also presented in detail.Furthermore,the remaining challenges and future perspectives in this field are discussed.