The design and preparation of hybrid mixed matrix membranes based on PVC (polyvinylchloride) were studied for the separation of toluene--n-heptane mixtures by pervaporation. PVC was chosen as the starting organic ma...The design and preparation of hybrid mixed matrix membranes based on PVC (polyvinylchloride) were studied for the separation of toluene--n-heptane mixtures by pervaporation. PVC was chosen as the starting organic matrix because it is an inexpensive polymer, possessing a very high selectivity for aromatics. This property is due to the polar macromolecular structure that can induce a specific transfer of aromatic species compared with aliphatic species. To improve the performance of the PVC glassy structure, lhe incorporation of several inorganic micro- and nanopartieles in the polymer matrix was performed to prepare mixed matrix membranes. The results reported were obtained using several types of clay, i.e., Maghnite, Wyoming, Kaolin and Nanocor, with the goal of improving membrane permeability due to the hybrid network. Our results show that the transport properties of the modified PVC network can be drastically modified by the type and amount of particles used,展开更多
文摘The design and preparation of hybrid mixed matrix membranes based on PVC (polyvinylchloride) were studied for the separation of toluene--n-heptane mixtures by pervaporation. PVC was chosen as the starting organic matrix because it is an inexpensive polymer, possessing a very high selectivity for aromatics. This property is due to the polar macromolecular structure that can induce a specific transfer of aromatic species compared with aliphatic species. To improve the performance of the PVC glassy structure, lhe incorporation of several inorganic micro- and nanopartieles in the polymer matrix was performed to prepare mixed matrix membranes. The results reported were obtained using several types of clay, i.e., Maghnite, Wyoming, Kaolin and Nanocor, with the goal of improving membrane permeability due to the hybrid network. Our results show that the transport properties of the modified PVC network can be drastically modified by the type and amount of particles used,