期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Acousto-optic scanning spatial-switching multiphoton lithography 被引量:5
1
作者 Binzhang Jiao Fayu Chen +6 位作者 Yuncheng Liu Xuhao Fan Shaoqun Zeng Qi Dong leimin deng Hui Gao Wei Xiong 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期597-606,共10页
Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanuf... Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanufacturing technologies,which has been widely used in manufacturing micro-optics,photonic crystals,microfluidics,meta-surface,and mechanical metamaterials.Despite of tremendous potential of MPL in laboratorial and industrial applications,simultaneous achievement of high throughput,high accuracy,high design freedom,and a broad range of material structuring capabilities remains a long-pending challenge.To address the issue,we propose an acousto-optic scanning with spatial-switching multispots(AOSS)method.Inertia-free acousto-optic scanning and nonlinear swept techniques have been developed for achieving ultrahigh-speed and aberration-free scanning.Moreover,a spatial optical switch concept has been implemented to significantly boost the lithography throughput while maintaining high resolution and high design freedom.An eight-foci AOSS system has demonstrated a record-high 3D printing rate of 7.6×10^(7)voxel s^(-1),which is nearly one order of magnitude higher than earlier scanning MPL,exhibiting its promise for future scalable 3D nanomanufacturing. 展开更多
关键词 3D nano-printing acousto-optic scanning aberration-free wavefront spatial-switching
下载PDF
Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction 被引量:14
2
作者 Hui Gao Xuhao Fan +8 位作者 Yuxi Wang Yuncheng Liu Xinger Wang Ke Xu leimin deng Cheng Zeng Tingan Li Jinsong Xia Wei Xiong 《Opto-Electronic Science》 2023年第3期7-16,共10页
Multispectral and polarized focusing and imaging are key functions that are vitally important for a broad range of optical applications.Conventional techniques generally require multiple shots to unveil desired optica... Multispectral and polarized focusing and imaging are key functions that are vitally important for a broad range of optical applications.Conventional techniques generally require multiple shots to unveil desired optical information and are implemented via bulky multi-pass systems or mechanically moving parts that are difficult to integrate into compact and integrated optical systems.Here,a design of ultra-compact transversely dispersive metalens capable of both spectrum and polarization ellipticity recognition and reconstruction in just a single shot is demonstrated with both coherent and incoherent light.Our design is well suited for integrated and high-speed optical information analysis and can significantly reduce the size and weight of conventional devices while simplifying the process of collecting optical information,thereby promising for various applications,including machine vision,minimized spectrometers,material characterization,remote sensing,and other areas which require comprehensive optical analysis. 展开更多
关键词 metalens multispectral imaging polarized imaging spectra and polarization reconstruction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部