期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Effect of Wide-Range Photosynthetic Active Radiations on Photosynthesis,Growth and Flowering of Rosa sp.and Kalanchoe blossfeldiana 被引量:4
1
作者 leiv m.mortensen 《American Journal of Plant Sciences》 2014年第11期1489-1498,共10页
Miniature roses (Rosa sp.) and Kalanchoe blossfeldiana were grown at photon flux densities (PFD) ranging from 60 to 670 μmol·m-2·s-1 (associated with a temperature gradient from 20.0°C to 24.0°C [... Miniature roses (Rosa sp.) and Kalanchoe blossfeldiana were grown at photon flux densities (PFD) ranging from 60 to 670 μmol·m-2·s-1 (associated with a temperature gradient from 20.0°C to 24.0°C [TEMP1]) and from 50 to 370μmol·m-2-s-1 (associated with a temperature gradient from 22.5°C to 26.5°C [TEMP2]). The experiment was conducted in a greenhouse compartment at latitude 59° north in mid-winter. The daily photosynthetic active radiations (PAR) ranged from 4.3 to 48.2 and 3.6 to 26.6 mol·m-2·day-1 in the TEMP1 and TEMP2 treatments, respectively. Time until flowering in miniature roses decreased from about 50 to 35 days in the TEMP1 treatment and from 50 to 25 days in the TEMP2 treatment, when the PFD increased from 50 to 370μmol·m-2·s-1. In Kalanchoe time until flowering was decreased to the same extent (about 15 days) in both temperature treatments when PFD increased from 50 to 370 μmol·m-2·s-1. The number of flowers and the plant dry weight in miniature roses increased up to 300 – 400 μmol·m-2·s-1 PFD (21.6 - 28.8 mol·m-2 day-1 PAR), while flower stem fresh weight and plant dry weight in Kalanchoe increased up to 200 – 300 μmol·m-2·s-1 at TEMP1. Measurements of the diurnal carbon dioxide exchange rates (CER) in daylight in small plant stands of roses in summertime showed that CER was saturated at about 300 μmol·m-2·s-1 PFD at 370 μmol·mol-1 CO2 and at 400 – 500 μmol·m-2·s-1 PFD at 800 μmol·mol-1 CO2. For Kalanchoe similar results were obtained. Increasing the CO2 concentration from 370 to 800 μmol·mol-1 increased the CER in roses (48%) as well in Kalanchoe (69%). It was concluded that 15 to 20 mol·m-2·day-1 combined with about 24°C air temperature and high CO2 concentration will give a very good growth with lot of flowers within a short production time in miniature roses. For Kalanchoe 10 to 15 mol·m-2·day-1 combined with about 20°C and high CO2 produced a similar result. 展开更多
关键词 Ait Temperature Carbon Dioxide Exchange Rate FLOWERING GROWTH Kalanchoe blossfeldiana Miniature Rose Photon Flux Density Photosynthetic Active Radiation
下载PDF
The Effect of Photon Flux Density and Lighting Period on Growth,Flowering,Powdery Mildew and Water Relations of Miniature Roses 被引量:1
2
作者 leiv m.mortensen 《American Journal of Plant Sciences》 2014年第13期1813-1818,共6页
Miniature roses (Rosa sp.) were grown at 100 and 150 μmol m-2·s-1 photon flux densities (PFD) with 16, 20 and 24 h·day-1 lighting periods (LP) in a greenhouse compartment in midwinter at latitude 59° n... Miniature roses (Rosa sp.) were grown at 100 and 150 μmol m-2·s-1 photon flux densities (PFD) with 16, 20 and 24 h·day-1 lighting periods (LP) in a greenhouse compartment in midwinter at latitude 59° north. The study included 10 different treatments and six rose cultivars, altogether 900 plants. The 16 and 20 h LP were applied with or without a dark period of 8 and 4 h·day-1, respectively, by timing the LP in relation to daylight that lasted for 7 - 8 h. Number of days until flowering decreased with an increase in PFD and in LP up to 24 day-1 and was unaffected by the timing of the 16 and 20 h·day-1 LP. Number of flowers and plant dry weight increased 20% to 30% by increasing the PFD. Plant dry weight increased by increasing the LP from 16 to 20 h·day-1 (about 25%), but no effect was found with a further increase to 24 h·day-1. Mean growth rate until flowering increased 30% to 40% by increasing the PFD or by increasing the LP from 16 to 20 h day-1, while little effect was found by a further increase to 24 h·day-1. Increasing the photosynthetic active radiation (PAR) by increasing the LP from 16 to 20 h·day-1 increased the growth rate more than increasing the PFD did. Three of the cultivars were tested for water loss after the detachment of some leaves. Leaves that had developed without a dark period showed a considerably higher water loss than the treatments that included a dark period of 4 or 8 h·day-1. The keeping quality at indoor conditions, however, was unaffected by the treatment due to sufficient watering. Powdery mildew developed significantly more on plants grown with a dark period of 8 h as compared with the other treatments. It was concluded that 20 h·day-1 LP including a dark period of 4 h·day-1 and a PFD of at least 150 μmol·m-2·s-1 should be applied to miniature roses during the winter months in order to effectively produce miniature pot roses with a high quality. 展开更多
关键词 FLOWERING GROWTH Keeping Life Leaf Water Loss Lighting Period Miniature Rose Photon Flux Density(PFD) Photosynthetic Active Radiation(PAR) Powdery Mildew
下载PDF
The Effect of Air Temperature on Growth of Eight Herb Species
3
作者 leiv m.mortensen 《American Journal of Plant Sciences》 2014年第11期1542-1546,共5页
The effect of different constant air temperatures (18°C, 21°C, 24°C and 27°C) and variable temperatures (24°C/18°C and 27°C/15°C in 12 h/12 h periods) on basil, sage, thyme, lem... The effect of different constant air temperatures (18°C, 21°C, 24°C and 27°C) and variable temperatures (24°C/18°C and 27°C/15°C in 12 h/12 h periods) on basil, sage, thyme, lemon balm, cilantro, rosemary, oregano and rocket was studied. Supplementary lighting was given 16 h·day-1 at a photon flux density (PFD) of 150 μmol·m-2·s-1 (corresponding to 8.6 mol·m-2·day-1 photosynthetic active radiation [PAR]). Including daylight the PAR was 29.6 ± 6.9 mol·m-2·day-1 as a mean during the experimental period. Increasing the temperature from 18°C to 27°C increased the fresh weight in basil (106%), sage (95%), rosemary (126%) and rocket (62%), while an increase from 18°C to 24°C increased the weight in lemon balm (78%), cilantro (41%), oregano (40%) and thyme (58%). For the last four species the fresh weight was unaffected by a further increase to 27°C. No significant difference was found between the 24°C/18°C and 27°C/15°C treatments. These treatments gave a mean temperature of about 21°C, and no significant differences were found between these treatments and the constant 21°C treatment. The plant height generally increased in the same proportion as the fresh weight increased in the different species. No differences were visually observed between the treatments after two weeks under indoor conditions. All species remained green except cilantro and rocket, for which some leaf yellowing took place. A simple test indicated that the flavour increased with increasing temperature (from 18°C to 27°C) in all species except cilantro. 展开更多
关键词 Air Temperature BASIL Cilantro GROWTH Lemon Balm Oregano Rocket ROSEMARY Sage THYME
下载PDF
The Effect of Photosynthetic Active Radiation and Temperature on Growth and Flowering of Ten Flowering Pot Plant Species
4
作者 leiv m.mortensen 《American Journal of Plant Sciences》 2014年第13期1907-1917,共11页
Hibiscus rosa-sinensis, Rosa sp. (miniature roses), Sinningia speciosa, Gerbera hybrida, Kalanchoe blossfeldiana, Hydrangea, Begonia x hiemalis, Calceolaria, Cyclamen persicum and Pelargonium domesticum were grown at ... Hibiscus rosa-sinensis, Rosa sp. (miniature roses), Sinningia speciosa, Gerbera hybrida, Kalanchoe blossfeldiana, Hydrangea, Begonia x hiemalis, Calceolaria, Cyclamen persicum and Pelargonium domesticum were grown at six photon flux densities (85, 130, 170, 215, 255 and 300 μmol·m-2·s-1, PFD) during lighting periods of 20 h·day-1 at three air temperatures (18°C, 21°C and 24°C) in midwinter at latitude 59° north. This corresponded to photosynthetic active radiations (PAR) ranging from 6.1 to 21.6 mol·m-2·day-1. Time until flowering decreased in all species except Cyclamen when the temperature increased from 18°C to 21°C, particularly at lower PFD levels. A further increase in temperature, from 21°C to 24°C, clearly decreased time until flowering in six of the ten tested species. Generally, this represented a reduction in the time until flowering between 20% and 40%. The dry weight of the plants at time of flowering increased up to 170 μmol·m-2·s-1 PFD (12.2 mol·m-2·day-1 PAR) in Hibiscus, miniature rose, Kalanchoe and Pelargonium, while the dry weight reached a maximum at 85 to 130 μmol·m-2·s-1 PFD mol·m-2·day-1 (6.1 to 9.4 mol·m-2·day-1)in the other species. Based on the present results a PAR level of 6 to 8 mol m-2·day-1 is recommended for Calceolaria and Cyclamen, of 8 to 10 mol·m-2·day-1 for Sinningia, Gerbera, Kalanchoe, Hydrangea and Begonia, of 10 to 12 mol·m-2·day-1 for Pelargonium and of 12 to 15 mol·m-2 day-1 for Hibiscus and miniature roses. 展开更多
关键词 Air Temperature FLOWERING GROWTH Photon Flux Density(PFD) Photosynthetic Active Radiation(PAR) Pot Plants
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部