The first mathematically consistent exact equations of quantum gravity in the Heisenberg representation and Hamilton gauge are obtained. It is shown that the path integral over the canonical variables in the Hamilton ...The first mathematically consistent exact equations of quantum gravity in the Heisenberg representation and Hamilton gauge are obtained. It is shown that the path integral over the canonical variables in the Hamilton gauge is mathematically equivalent to the operator equations of quantum theory of gravity with canonical rules of quantization of the gravitational and ghost fields. In its operator formulation, the theory can be used to calculate the graviton S-matrix as well as to describe the quantum evolution of macroscopic system of gravitons in the non-stationary Universe or in the vicinity of relativistic objects. In the S-matrix case, the standard results are obtained. For problems of the second type, the original Heisenberg equations of quantum gravity are converted to a self-consistent system of equations for the metric of the macroscopic space time and Heisenberg operators of quantum fields. It is shown that conditions of the compatibility and internal consistency of this system of equations are performed without restrictions on the amplitude and wavelength of gravitons and ghosts. The status of ghost fields in the various formulations of quantum theory of gravity is discussed.展开更多
We discuss a special class of quantum gravity phenomena that occur on the scale of the Universe as a whole at any stage of its evolution, including the contemporary Universe. These phenomena are a direct consequence o...We discuss a special class of quantum gravity phenomena that occur on the scale of the Universe as a whole at any stage of its evolution, including the contemporary Universe. These phenomena are a direct consequence of the zero rest mass of gravitons, conformal non-invariance of the graviton field, and one-loop finiteness of quantum gravity, i.e. it is a direct consequence of first principles only. The effects are due to graviton-ghost condensates arising from the interfereence of quantum coherent states. Each of coherent states is a state of gravitons and ghosts of a wavelength of the order of the horizon scale and of different occupation numbers. The state vector of the Universe is a coherent superposition of vectors of different occupation numbers. One-loop approximation of quantum gravity is believed to be applicable to the contemporary Universe because of its remoteness from the Planck epoch. To substantiate the reliability of macroscopic quantum effects, the formalism of one-loop quantum gravity is discussed in detail. The theory is constructed as follows: Faddeev-Popov path integral in Hamilton gauge → factorization of classical and quantum variables, allowing the existence of a self-consistent system of equations for gravitons, ghosts and macroscopic geometry → transition to the one-loop approximation, taking into account that contributions of ghost fields to observables cannot be eliminated in any way. The ghost sector corresponding to the Hamilton gauge automatically ensures of one-loop finiteness of the theory off the mass shell. The Bogolyubov-Born-Green-Kirckwood-Yvon (BBGKY) chain for the spectral function of gravitons renormalized by ghosts is used to build a self-consistent theory of gravitons in the isotropic Universe. It is the first use of this technique in quantum gravity calculations. We found three exact solutions of the equations, consisting of BBGKY chain and macroscopic Einstein’s equations. It was found that these solutions describe virtual graviton and ghost condensates as well as condensates of instanton fluctuations. All exact solutions, originally found by the BBGKY formalism, are reproduced at the level of exact solutions for field operators and state vectors. It was found that exact solutions correspond to various condensates with different graviton-ghost compositions. Each exact solution corresponds to a certain phase state of graviton-ghost substratum. We establish conditions under which a continuous quantum-gravity phase transitions occur between different phases of the graviton-ghost condensate.展开更多
文摘The first mathematically consistent exact equations of quantum gravity in the Heisenberg representation and Hamilton gauge are obtained. It is shown that the path integral over the canonical variables in the Hamilton gauge is mathematically equivalent to the operator equations of quantum theory of gravity with canonical rules of quantization of the gravitational and ghost fields. In its operator formulation, the theory can be used to calculate the graviton S-matrix as well as to describe the quantum evolution of macroscopic system of gravitons in the non-stationary Universe or in the vicinity of relativistic objects. In the S-matrix case, the standard results are obtained. For problems of the second type, the original Heisenberg equations of quantum gravity are converted to a self-consistent system of equations for the metric of the macroscopic space time and Heisenberg operators of quantum fields. It is shown that conditions of the compatibility and internal consistency of this system of equations are performed without restrictions on the amplitude and wavelength of gravitons and ghosts. The status of ghost fields in the various formulations of quantum theory of gravity is discussed.
文摘We discuss a special class of quantum gravity phenomena that occur on the scale of the Universe as a whole at any stage of its evolution, including the contemporary Universe. These phenomena are a direct consequence of the zero rest mass of gravitons, conformal non-invariance of the graviton field, and one-loop finiteness of quantum gravity, i.e. it is a direct consequence of first principles only. The effects are due to graviton-ghost condensates arising from the interfereence of quantum coherent states. Each of coherent states is a state of gravitons and ghosts of a wavelength of the order of the horizon scale and of different occupation numbers. The state vector of the Universe is a coherent superposition of vectors of different occupation numbers. One-loop approximation of quantum gravity is believed to be applicable to the contemporary Universe because of its remoteness from the Planck epoch. To substantiate the reliability of macroscopic quantum effects, the formalism of one-loop quantum gravity is discussed in detail. The theory is constructed as follows: Faddeev-Popov path integral in Hamilton gauge → factorization of classical and quantum variables, allowing the existence of a self-consistent system of equations for gravitons, ghosts and macroscopic geometry → transition to the one-loop approximation, taking into account that contributions of ghost fields to observables cannot be eliminated in any way. The ghost sector corresponding to the Hamilton gauge automatically ensures of one-loop finiteness of the theory off the mass shell. The Bogolyubov-Born-Green-Kirckwood-Yvon (BBGKY) chain for the spectral function of gravitons renormalized by ghosts is used to build a self-consistent theory of gravitons in the isotropic Universe. It is the first use of this technique in quantum gravity calculations. We found three exact solutions of the equations, consisting of BBGKY chain and macroscopic Einstein’s equations. It was found that these solutions describe virtual graviton and ghost condensates as well as condensates of instanton fluctuations. All exact solutions, originally found by the BBGKY formalism, are reproduced at the level of exact solutions for field operators and state vectors. It was found that exact solutions correspond to various condensates with different graviton-ghost compositions. Each exact solution corresponds to a certain phase state of graviton-ghost substratum. We establish conditions under which a continuous quantum-gravity phase transitions occur between different phases of the graviton-ghost condensate.