This study presents an analysis of the relationship of angles and trigonometric functions by applying Hall Effect Sensor (HES). Electromagnetic density of 4.624 mT can be generated from the Helmholtz coil. Angle of sh...This study presents an analysis of the relationship of angles and trigonometric functions by applying Hall Effect Sensor (HES). Electromagnetic density of 4.624 mT can be generated from the Helmholtz coil. Angle of shaft which was installed at the center of the Helmholtz coil perpendicularly to horizontal plane was considered as reference and can be rotated. In this study, an experiment for measuring the angle of shaft declination on X-axis was carried on. Ranges of measurement were related to the angle resolution between –15 to 15 degree with 1 step degree interval from perpendicular angle (Y-axis). Analysis of the relationship between shaft declination and electromagnetic field was performed using HES device which was installed on the top of shaft and perpendicularly to reference electromagnetic field [1,2]. The angle declining from the origin which was normal to magnetic field can be determined by measuring the relationship between Hall voltage and magnetic field. Normally, electromagnetic field is nonuniform and varied by point in Helmholtz coil radius. Shaft angles on X-axis were measured for assessing the repeatability of system developed. Five values of results were measured repeatedly at the same input. It can be observed that the system developed can provide the results with the best accuracy and reliability of 95%.展开更多
This study presents an analysis of equivalent circuit namely Butterworth Van Dyke (BVD) [1,2] by using impedance method to stimulate Zirconate Titanate (Piezoelectric ceramic) which is initially synthesized from Lead ...This study presents an analysis of equivalent circuit namely Butterworth Van Dyke (BVD) [1,2] by using impedance method to stimulate Zirconate Titanate (Piezoelectric ceramic) which is initially synthesized from Lead Oxide (PbO), Zirconium Dioxide (ZrO2) and Titanium Dioxide (TiO2) and vibrated in thickness mode. The reactance was estimated in the frequency range lower than the resonance frequency and then compared to the impedance obtained from measurement using impedance analysis machine model HP4192A and HP4194 [3]. The results from HP4194 were analyzed for BVD parameters: Motional resistance (R1), Inductor (L1), Capacitor (C1), and Capacitor corresponds to the electrostatic capacitance (Co). Another accuracy analysis was compared by the calculation results using the method of IEEE 176-1987 [4] to the impedance values measured by HP4192A. In this study, there were two conditions for experiment and consideration of parameter variation in BVD equivalent circuit: variation of temperature and mechanical force. These parameters are evaluated to design the efficient circuit for PZT utilization to obtain the optimal efficiency.展开更多
文摘This study presents an analysis of the relationship of angles and trigonometric functions by applying Hall Effect Sensor (HES). Electromagnetic density of 4.624 mT can be generated from the Helmholtz coil. Angle of shaft which was installed at the center of the Helmholtz coil perpendicularly to horizontal plane was considered as reference and can be rotated. In this study, an experiment for measuring the angle of shaft declination on X-axis was carried on. Ranges of measurement were related to the angle resolution between –15 to 15 degree with 1 step degree interval from perpendicular angle (Y-axis). Analysis of the relationship between shaft declination and electromagnetic field was performed using HES device which was installed on the top of shaft and perpendicularly to reference electromagnetic field [1,2]. The angle declining from the origin which was normal to magnetic field can be determined by measuring the relationship between Hall voltage and magnetic field. Normally, electromagnetic field is nonuniform and varied by point in Helmholtz coil radius. Shaft angles on X-axis were measured for assessing the repeatability of system developed. Five values of results were measured repeatedly at the same input. It can be observed that the system developed can provide the results with the best accuracy and reliability of 95%.
文摘This study presents an analysis of equivalent circuit namely Butterworth Van Dyke (BVD) [1,2] by using impedance method to stimulate Zirconate Titanate (Piezoelectric ceramic) which is initially synthesized from Lead Oxide (PbO), Zirconium Dioxide (ZrO2) and Titanium Dioxide (TiO2) and vibrated in thickness mode. The reactance was estimated in the frequency range lower than the resonance frequency and then compared to the impedance obtained from measurement using impedance analysis machine model HP4192A and HP4194 [3]. The results from HP4194 were analyzed for BVD parameters: Motional resistance (R1), Inductor (L1), Capacitor (C1), and Capacitor corresponds to the electrostatic capacitance (Co). Another accuracy analysis was compared by the calculation results using the method of IEEE 176-1987 [4] to the impedance values measured by HP4192A. In this study, there were two conditions for experiment and consideration of parameter variation in BVD equivalent circuit: variation of temperature and mechanical force. These parameters are evaluated to design the efficient circuit for PZT utilization to obtain the optimal efficiency.