An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic co...An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic conditions.The influences of the process parameters(e.g.,cell voltage and current)on the compositions of the reduced compounds were investigated to yield industrially desirable alloys,namely,CuNi10,CuNi20,and CuNi30.The electrochemical behaviors of Cu2S and NiS in CaCl2 melt were examined at a temperature of 1200°C via cyclic voltammetry(CV).Based on the CV results,the cathodic reduction of Cu2S occurred in one step and cathodic reductions of NiS occurred in two steps,i.e.,Cu2S?Cu for copper reduction and NiS?Ni3S2?Ni for nickel reduction.Galvanostatic studies revealed that it was possible to fabricate high-purity CuNi10 alloys containing a maximum sulfur content of 320×10-6 via electrolysis at 10 A for 15 min.Scanning electron microscopy along with energy-dispersive X-ray spectrometry and optical emission spectroscopy(OES)examinations showed that it was possible to fabricate CuNi alloys of preferred compositions and with low levels of impurities,i.e.,less than 60×10-6 sulfur,via DER at 2.5 V for 15 min.展开更多
In this study,antimony production from a stibnite concentrate(Sb2S3)was performed in one step using a molten salt electrolysis method and borax as an electrolyte.Electrochemical reduction of the stibnite concentrate w...In this study,antimony production from a stibnite concentrate(Sb2S3)was performed in one step using a molten salt electrolysis method and borax as an electrolyte.Electrochemical reduction of the stibnite concentrate was performed at 800℃under galvanostatic conditions and explained in detail by the reactions and intermediate compounds formed in the borax.The effects of current density(100 800 mA cm^-2)and electrolysis time(10 40 min)on cathodic current efficiency and antimony yields were systematically investigated.During the highest current efficiency,which was obtained at 600 mA cm^-2,direct metal production was possible with 62%cathodic current efficiency and approximately 6 kWh/kg energy consumption.At the end of the 40-min electrolysis duration at 600 mA cm^-2 current density,antimony reduction reached 30.7 g and 99%of the antimony fed to the cell was obtained as metal.展开更多
In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current de...In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current density(100–800 mA/cm^2)and electrolysis time(15–90 min)on both the cathodic current efficiency and copper yield were systematically investigated in consideration of possible electrochemical/chemical reactions at 1200℃.The copper production yield reached 98.09%after 90 min of electrolysis at a current density of 600 mA/cm^2.Direct metal production was shown to be possible with 6 kWh/kg energy consumption at a 600 mA/cm2 current density,at which the highest current efficiency(41%)was obtained.The suggested method can also be applied to metal/alloy production from single-and mixed-metal sulfides coming from primary production and precipitated sulfides,which are produced in the mining and metallurgical industries during treatment of process solutions or wastewaters.展开更多
文摘An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic conditions.The influences of the process parameters(e.g.,cell voltage and current)on the compositions of the reduced compounds were investigated to yield industrially desirable alloys,namely,CuNi10,CuNi20,and CuNi30.The electrochemical behaviors of Cu2S and NiS in CaCl2 melt were examined at a temperature of 1200°C via cyclic voltammetry(CV).Based on the CV results,the cathodic reduction of Cu2S occurred in one step and cathodic reductions of NiS occurred in two steps,i.e.,Cu2S?Cu for copper reduction and NiS?Ni3S2?Ni for nickel reduction.Galvanostatic studies revealed that it was possible to fabricate high-purity CuNi10 alloys containing a maximum sulfur content of 320×10-6 via electrolysis at 10 A for 15 min.Scanning electron microscopy along with energy-dispersive X-ray spectrometry and optical emission spectroscopy(OES)examinations showed that it was possible to fabricate CuNi alloys of preferred compositions and with low levels of impurities,i.e.,less than 60×10-6 sulfur,via DER at 2.5 V for 15 min.
文摘In this study,antimony production from a stibnite concentrate(Sb2S3)was performed in one step using a molten salt electrolysis method and borax as an electrolyte.Electrochemical reduction of the stibnite concentrate was performed at 800℃under galvanostatic conditions and explained in detail by the reactions and intermediate compounds formed in the borax.The effects of current density(100 800 mA cm^-2)and electrolysis time(10 40 min)on cathodic current efficiency and antimony yields were systematically investigated.During the highest current efficiency,which was obtained at 600 mA cm^-2,direct metal production was possible with 62%cathodic current efficiency and approximately 6 kWh/kg energy consumption.At the end of the 40-min electrolysis duration at 600 mA cm^-2 current density,antimony reduction reached 30.7 g and 99%of the antimony fed to the cell was obtained as metal.
文摘In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current density(100–800 mA/cm^2)and electrolysis time(15–90 min)on both the cathodic current efficiency and copper yield were systematically investigated in consideration of possible electrochemical/chemical reactions at 1200℃.The copper production yield reached 98.09%after 90 min of electrolysis at a current density of 600 mA/cm^2.Direct metal production was shown to be possible with 6 kWh/kg energy consumption at a 600 mA/cm2 current density,at which the highest current efficiency(41%)was obtained.The suggested method can also be applied to metal/alloy production from single-and mixed-metal sulfides coming from primary production and precipitated sulfides,which are produced in the mining and metallurgical industries during treatment of process solutions or wastewaters.