期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Irrigation Water Demand Model as a Comparative Tool for Assessing Effects of Land Use Changes for Agricultural Crops in Fraser Valley, Canada 被引量:2
1
作者 Skylar Kylstra Autumn D. Watkinson +1 位作者 lewis fausak Leslie M. Lavkulich 《Agricultural Sciences》 2021年第8期888-906,共19页
Available water for human needs and agriculture is a growing global concern. Agriculture uses approximately 70% of global freshwater, mainly for irrigation. The Lower Fraser Valley (LFV), British Columbia, is one of t... Available water for human needs and agriculture is a growing global concern. Agriculture uses approximately 70% of global freshwater, mainly for irrigation. The Lower Fraser Valley (LFV), British Columbia, is one of the most productive agricultural regions in Canada, supporting livestock production and a wide variety of crops. Water scarcity is a growing concern that threatens the long-term productivity, sustainability, and economic viability of the LFV’s agriculture. We used the BC Agriculture Water Demand Model as a tool to determine how crop choice, irrigation system, and land-use changes can affect predicted water requirements under these different conditions, which can aid stakeholders to formulate better management decisions. We conducted a comparative assessment of the irrigation water demand of seven major commercial crops, by distinct soil management groups, at nineteen representative sites, that use both sprinkler vs drip irrigation. Drip irrigation was consistently more water-efficient than sprinkler irrigation for all crops. Of the major commercial crops assessed, raspberries were the most efficient in irrigation water demand, while forage and pasture had the highest calculated irrigation water demand. Significant reductions in total irrigation water demand (up to 57%) can be made by switching irrigation systems and/or crops. This assessment can aid LFV growers in their land-use choices and could contribute to the selection of water management decisions and agricultural policies. 展开更多
关键词 Drip Irrigation Sprinkler Irrigation Water Management Water Resources Agricultural Water Demand Model
下载PDF
An Integrated Framework for Regional Assessment of Water, Energy, and Nutrients from Food Loss of Selected Crops in the Lower Fraser Valley, Canada 被引量:1
2
作者 Ana Reinesch lewis fausak +2 位作者 Anne Joseph Skylar Kylstra Les Lavkulich 《Agricultural Sciences》 2022年第5期633-657,共25页
Although there is no global shortage of food or water, food security has not been achieved, as human activity has turned these vital resources into “waste”. Wasted food not only loses valuable water resources but em... Although there is no global shortage of food or water, food security has not been achieved, as human activity has turned these vital resources into “waste”. Wasted food not only loses valuable water resources but embedded calories of human energy and nutrients for healthy human populations. The Food and Agricultural Organization of the United Nations, in addressing these concerns, focuses on a global scale largely on an economic estimate of individual components of energy or water or nutrient loss. It is suggested that more information is required through local or regional assessments to provide better estimates, incorporating regional factors of the losses along the food supply chain. To address this suggestion, this study focused on an intensive agricultural and rapidly urbanizing region of Canada, the Lower Fraser Valley of British Columbia. Seven selected crops, including annual crops such as green peas, sweet corn and potato, and perennial crops that included three berry crops were assessed for their water, both constituent and virtual, as well as embedded energy, protein, and Vitamin C. Annual virtual water losses were higher for sprinkler than drip irrigation, ranging from 82 × 10<sup>6</sup> kg of water for strawberry to 7570 × 10<sup>6</sup> kg for blueberry. These high virtual water losses estimated along the food chain confirm the significance of food loss impacts on local water resources. Estimates of losses of food in kg were highest at the consumer level along the food chain and it was estimated that wasted food from the seven crops selected would have supplied the protein and caloric energy of over 33,000 men per year and Vitamin C of about 240,000 men per year. This assessment increases the awareness of food loss impacts from a regional perspective and provides a framework for future research on both environmental and nutritional implications of wasted food. 展开更多
关键词 Food Loss Food Waste Crop Water Demand Virtual Water NUTRITION
下载PDF
Water, Energy and Nutrient Losses from Food Wastage of Selected Crops in Three Agro-Climatic Zones in British Columbia, Canada
3
作者 Ana Reinesch lewis fausak +1 位作者 Anne Joseph Les Lavkulich 《Agricultural Sciences》 CAS 2022年第8期947-972,共26页
Food waste is a growing global concern. Data on the factors and magnitude are largely global estimates, thus local studies aid in providing information on the impacts of food waste. Three important agro-climatic zones... Food waste is a growing global concern. Data on the factors and magnitude are largely global estimates, thus local studies aid in providing information on the impacts of food waste. Three important agro-climatic zones in British Columbia and nine common crops, both annual and perennial, were selected to evaluate the environmental and nutritional implications of local food waste. Using Canadian estimates of total food waste, the constituent water, caloric content, protein, vitamin C, phosphorus and potassium wasted by each crop were estimated. Regionally, the total production and losses were the highest in the Lower Fraser Valley which had high production of potatoes and blueberries, followed by the Okanagan, with grapes and apples, and Vancouver Island, with potatoes. Virtual water was estimated by the BC Agriculture Water Calculator and used to assess the soil and climatic factors impacting the local water demand. Although soil texture seemed to influence water demand, the agro-climatic zone was the main factor controlling the water demand and the corresponding amount of water wasted. Dry agro-climatic zones had annual virtual water up to two times higher for the same crop and soil texture. Lower water demand crops, finer soils and more efficient irrigation systems were more congruent with water stress scenarios. Total losses for each region were based on conservative estimates and would have supplied the caloric energy and protein for over 40,000 adults, and vitamin C for over 300,000 adults for one year. Additionally, the total N, P and K wasted accounted for up to 32, 2 and 13 kg/ha respectively for common fertilizers used in British Columbia. This study confirmed the significance of food waste impacts on local water demand, human nutrition and soil management based on regional data for representative crops. 展开更多
关键词 Food Loss Food Waste Crop Water Demand Virtual Water NUTRITION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部