Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and have diverse functions during development and organogenesis. BMPs play a major role in skeletal development and bone formation, and disrupti...Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and have diverse functions during development and organogenesis. BMPs play a major role in skeletal development and bone formation, and disruptions in BMP signaling cause a variety of skeletal and extraskeletal anomalies. Several knockout models have provided insight into the mechanisms responsible for these phenotypes. Proper bone formation requires the differentiation of osteoblasts from mesenchymal stem cell (MSC) precursors, a process mediated in part by BMP signaling. Multiple BMPs, including BMP2, BMP6, BMP7 and BMP9, promote osteoblastic differentiation of MSCs both in vitro and in vivo. BMP9 is one of the most osteogenic BMPs, yet it is a poorly characterized member of the BMP family. Several studies demonstrate that the mechanisms controlling BMP9-mediated osteogenesis differ from other osteogenic BMPs, but little is known about these specific mechanisms. Several pathways critical to BMP9-mediated osteogenesis are also important in the differentiation of other cell lineages, including adipocytes and chondrocytes. BMP9 has also demonstrated translational promise in spinal fusion and bone fracture repair. This review will summarize our current knowledge of BMP-mediated osteogenesis, with a focus on BMP9, by presenting recently completed work which may help us to further elucidate these pathways.展开更多
The authors regret having image assembly errors in Figure 1A and Figure 3A.Specifically,in Figure 1A,the images for"C3H10T1/2",""BMP2"and"Sox9"were erroneously duplicated with the im...The authors regret having image assembly errors in Figure 1A and Figure 3A.Specifically,in Figure 1A,the images for"C3H10T1/2",""BMP2"and"Sox9"were erroneously duplicated with the images from an irrelevant experiment that was conducted at the same time.In Figure 3A,the images for"Col2a1"and"β-actin"were erroneously duplicated with the images from an irrelevant experiment that was conducted at the same time.展开更多
文摘Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and have diverse functions during development and organogenesis. BMPs play a major role in skeletal development and bone formation, and disruptions in BMP signaling cause a variety of skeletal and extraskeletal anomalies. Several knockout models have provided insight into the mechanisms responsible for these phenotypes. Proper bone formation requires the differentiation of osteoblasts from mesenchymal stem cell (MSC) precursors, a process mediated in part by BMP signaling. Multiple BMPs, including BMP2, BMP6, BMP7 and BMP9, promote osteoblastic differentiation of MSCs both in vitro and in vivo. BMP9 is one of the most osteogenic BMPs, yet it is a poorly characterized member of the BMP family. Several studies demonstrate that the mechanisms controlling BMP9-mediated osteogenesis differ from other osteogenic BMPs, but little is known about these specific mechanisms. Several pathways critical to BMP9-mediated osteogenesis are also important in the differentiation of other cell lineages, including adipocytes and chondrocytes. BMP9 has also demonstrated translational promise in spinal fusion and bone fracture repair. This review will summarize our current knowledge of BMP-mediated osteogenesis, with a focus on BMP9, by presenting recently completed work which may help us to further elucidate these pathways.
文摘The authors regret having image assembly errors in Figure 1A and Figure 3A.Specifically,in Figure 1A,the images for"C3H10T1/2",""BMP2"and"Sox9"were erroneously duplicated with the images from an irrelevant experiment that was conducted at the same time.In Figure 3A,the images for"Col2a1"and"β-actin"were erroneously duplicated with the images from an irrelevant experiment that was conducted at the same time.