期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk
1
作者 Kevin Qin Michael Yu +18 位作者 Jiaming Fan Hongwei Wang Piao Zhao Guozhi Zhaoo Wei Zeng Connie Chen Yonghui Wang Annie Wang Zander Schwartz Jeffrey Hong Lily Song William Wagstaff Rex C.Haydon Hue H.Luu Sherwin H.Ho Jason Strelzow Russell R.Reid Tong-Chuan He lewis l.shi 《Genes & Diseases》 SCIE CSCD 2024年第1期103-134,共32页
Wnt signaling plays a major role in regulating cell proliferation and differentiation.The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors an... Wnt signaling plays a major role in regulating cell proliferation and differentiation.The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either throughβ-catenin in the canonical pathway or through a series of other proteins in the nonca-nonical pathway.Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body,establishing the complex interplay between Wnt signaling and other signaling pathways.This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes.Dys-regulation of this system has been implicated in many diseases affecting a wide array of organ systems,including cancer and embryological defects,and can even cause embryonic lethality.The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments.However,both stimulatory and inhibitory treatments come with potential risks that need to be addressed.This review synthesized much of the current knowl-edge on the Wnt signaling pathway,beginning with the history of Wnt signaling.It thoroughly described the different variants of Wnt signaling,including canonical,noncanonical Wnt/PCP,and the noncanonical Wnt/Ca2+pathway.Further description involved each of its components and their involvement in other cellular processes.Finally,this review explained the various other pathways and processes that crosstalk with Wnt signaling. 展开更多
关键词 β-catenin Canonical Wnt Noncanonical Wnt Signal transduction Signaling crosstalk
原文传递
Wnt/b-catenin signaling plays an ever-expanding role in stem cell self-renewal,tumorigenesis and cancer chemoresistance 被引量:75
2
作者 Maryam K.Mohammed Connie Shao +16 位作者 Jing Wang Qiang Wei Xin Wang Zachary Collier Shengli Tang Hao Liu Fugui Zhang Jiayi Huang Dan Guo Minpeng Lu Feng Liu Jianxiang Liu Chao Ma lewis l.shi Aravind Athiviraham Tong-Chuan He Michael J.Lee 《Genes & Diseases》 SCIE 2016年第1期11-40,共30页
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities,including cell proliferation,calcium homeostasis,and cell polar... Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities,including cell proliferation,calcium homeostasis,and cell polarity.The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway,which is the best-characterized the multiple Wnt signaling branches.The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway,as many new components of Wnt signaling have been identified and linked to signaling regulation,stem cell functions,and adult tissue homeostasis.Additionally,a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance.Thus,a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy.This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease.We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness,tumorigenesis,and cancer drug resistance.Ultimately,we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance. 展开更多
关键词 Cancer drug resistance Cancer stem cells Canonical Wnt b-Catenin WNT
原文传递
Bone Morphogenetic Protein (BMP) signaling in development and human diseases 被引量:52
3
作者 Richard N.Wang Jordan Green +17 位作者 Zhongliang Wang Youlin Deng Min Qiao Michael Peabody Qian Zhang Jixing Ye Zhengjian Yan Sahitya Denduluri Olumuyiwa Idowu Melissa Li Christine Shen Alan Hu Rex C.Haydon Richard Kang James Mok Michael J.Lee Hue L.Luu lewis l.shi 《Genes & Diseases》 SCIE 2014年第1期87-105,共19页
Bone Morphogenetic Proteins(BMPs)are a group of signaling molecules that belongs to the Transforming Growth Factor-b(TGF-b)superfamily of proteins.Initially discovered for their ability to induce bone formation,BMPs a... Bone Morphogenetic Proteins(BMPs)are a group of signaling molecules that belongs to the Transforming Growth Factor-b(TGF-b)superfamily of proteins.Initially discovered for their ability to induce bone formation,BMPs are now known to play crucial roles in all organ systems.BMPs are important in embryogenesis and development,and also in maintenance of adult tissue homeostasis.Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects,highlighting the essential functions of BMPs.In this review,we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development.A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling. 展开更多
关键词 BMP signaling DEVELOPMENT GENETICS Mouse knockout Pathogenesis Signal transduction
原文传递
The versatile functions of Sox9 in development,stem cells,and human diseases 被引量:19
4
作者 Alice Jo Sahitya Denduluri +8 位作者 Bosi Zhang Zhongliang Wang Liangjun Yin Zhengjian Yan Richard Kang lewis l.shi James Mok Michael J.Lee Rex C.Haydon 《Genes & Diseases》 SCIE 2014年第2期149-161,共13页
The transcription factor Sox9 was first discovered in patients with campomelic dysplasia,a haploinsufficiency disorder with skeletal deformities caused by dysregulation of Sox9 expression during chondrogenesis.Since t... The transcription factor Sox9 was first discovered in patients with campomelic dysplasia,a haploinsufficiency disorder with skeletal deformities caused by dysregulation of Sox9 expression during chondrogenesis.Since then,its role as a cell fate determiner during embryonic development has been well characterized;Sox9 expression differentiates cells derived from all three germ layers into a large variety of specialized tissues and organs.However,recent data has shown that ectoderm-and endoderm-derived tissues continue to express Sox9 in mature organs and stem cell pools,suggesting its role in cell maintenance and specification during adult life.The versatility of Sox9 may be explained by a combination of posttranscriptional modifications,binding partners,and the tissue type in which it is expressed.Considering its importance during both development and adult life,it follows that dysregulation of Sox9 has been implicated in various congenital and acquired diseases,including fibrosis and cancer.This review provides a summary of the various roles of Sox9 in cell fate specification,stem cell biology,and related human diseases.Ultimately,understanding the mechanisms that regulate Sox9 will be crucial for developing effective therapies to treat disease caused by stem cell dysregulation or even reverse organ damage. 展开更多
关键词 DEVELOPMENT SOX9 Stem cells Transcription factor
原文传递
Sox9 augments BMP2-induced chondrogenic differentiation by downregulating Smad7 in mesenchymal stem cells(MSCs) 被引量:9
5
作者 Chen Zhao Wei Jiang +15 位作者 Nian Zhou Junyi Liao Mingming Yang Ning Hu Xi Liang Wei Xu Hong Chen Wei Liu lewis l.shi Leonardo Oliveira Jennifer Moriatis Wolf Sherwin Ho Aravind Athiviraham H.M.Tsai Tong-Chuan He Wei Huang 《Genes & Diseases》 SCIE 2017年第4期229-239,共11页
Cartilage injuries caused by arthritis or trauma pose formidable challenges for effective clinical management due to the limited intrinsic proliferative capability of chondrocytes.Autologous stem cell-based therapies ... Cartilage injuries caused by arthritis or trauma pose formidable challenges for effective clinical management due to the limited intrinsic proliferative capability of chondrocytes.Autologous stem cell-based therapies and transgene-enhanced cartilage tissue engineering may open new avenues for the treatment of cartilage injuries.Bone morphogenetic protein 2(BMP2)induces effective chondrogenesis of mesenchymal stem cells(MSCs)and can thus be explored as a potential therapeutic agent for cartilage defect repair.However,BMP2 also induces robust endochondral ossification.Although the precise mechanisms through which BMP2 governs the divergence of chondrogenesis and osteogenesis remain to be fully understood,blocking endochondral ossification during BMP2-induced cartilage formation may have practical significance for cartilage tissue engineering.Here,we investigate the role of Sox9-donwregulated Smad7 in BMP2-induced chondrogenic differentiation of MSCs.We find that overexpression of Sox9 leads to a decrease in BMP2-induced Smad7 expression in MSCs.Sox9 inhibits BMP2-induced expression of osteopontin while enhancing the expression of chondrogenic marker Col2a1 in MSCs.Forced expression of Sox9 in MSCs promotes BMP2-induced chondrogenesis and suppresses BMP2-induced endochondral ossification.Constitutive Smad7 expression inhibits BMP2-induced chondrogenesis in stem cell implantation assay.Mouse limb explant assay reveals that Sox9 expands BMP2-stimulated chondrocyte proliferating zone while Smad7 promotes BMP2-intitated hypertrophic zone of the growth plate.Cell cycle analysis indicates that Smad7 induces significant early apoptosis in BMP2-stimulated MSCs.Taken together,our results strongly suggest that Sox9 may facilitate BMP2-induced chondrogenesis by downregulating Smad7,which can be exploited for effective cartilage tissue engineering. 展开更多
关键词 Bone morphogenetic protein 2(BMP2) Cartilage tissue engineering Chondrogenic differentiation Endochondral ossification Mesenchymal stem cells(MSCs) SMAD7 SOX9
原文传递
Multifaceted signaling regulators of chondrogenesis:Implications in cartilage regeneration and tissue engineering 被引量:9
6
作者 Jordan D.Green Viktor Tollemar +13 位作者 Mark Dougherty Zhengjian Yan Liangjun Yin Jixing Ye Zachary Collier Maryam K.Mohammed Rex C.Haydon Hue H.Luu Richard Kang Michael J.Lee Sherwin H.Ho Tong-Chuan He lewis l.shi Aravind Athiviraham 《Genes & Diseases》 SCIE 2015年第4期307-327,共21页
Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature.Current surgical treatment options do not ensure consistent regeneration of hyaline cartila... Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature.Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue.Here,we review the current understanding of the most important biological regulators of chondrogenesis and their interactions,to provide insight into potential applications for cartilage tissue engineering.These include various signaling pathways,including fibroblast growth factors(FGFs),transforming growth factor b(TGF-b)/bone morphogenic proteins(BMPs),Wnt/b-catenin,Hedgehog,Notch,hypoxia,and angiogenic signaling pathways.Transcriptional and epigenetic regulation of chondrogenesis will also be discussed.Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering. 展开更多
关键词 BMPS CARTILAGE Cell signaling CHONDROGENESIS FGF Regenerative medicine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部