Several types of coupling methods for resolving aerothermoelastic problems associated with hypersonic wings are summarized,and the appropriate coupling methods for engineering calculations are selected.Then,the calcul...Several types of coupling methods for resolving aerothermoelastic problems associated with hypersonic wings are summarized,and the appropriate coupling methods for engineering calculations are selected.Then,the calculation and analysis methods for the subdisciplines in this field are introduced,and the time step issue is discussed.A two-way-coupling rapid static aerothermoelastic method for analyzing hypersonic wings is proposed.This method considers thermal effects and is used to conduct an aerothermoelastic response analysis for a hypersonic wing.In addition,the aerodynamic force,heat flux,structural deformation and temperature field are obtained.The following three conclusions are drawn.First,the heating effect has a significant impact on the static aeroelastic response of hypersonic wings;therefore,thermal protection shields are essential.Second,the application of thermal protection shields reduces the differences in the calculation results between the one-and two-way-coupling methods.Third,hypersonic wings exhibit large thermal deformation under high-temperature environments,and in certain cases,the thermal deformation is even larger than the deformation caused by aerodynamic force.展开更多
A method to compute aerothermal-aeroelastic two-way coupling for hypersonic curved panel flutter is proposed. The aero-therrno-elastic governing equations of a simply-supported two dimensional curved panel are develop...A method to compute aerothermal-aeroelastic two-way coupling for hypersonic curved panel flutter is proposed. The aero-therrno-elastic governing equations of a simply-supported two dimensional curved panel are developed based on the von K'arrn'an geometrically non-linear theory. The Galerkin approach is used to simplify the equations into discrete forms, which are solved by the fourth-order Ronger-Kutta method. The third-order piston theory is applied to the aerodynamics. The Eck- ert's reference temperature method and the panel heat flux formula are used to compute the aerodynamic heat flux. Several important effects are included, namely 1) two-way coupling considering the effect of elastic deformation on aerodynamic heating and aerodynamic heating on stiffness of structure, 2) accumulation of the aerodynamic heating in real cruise, 3) arbitrary, non-uniform, in-plane and through-thickness temperature distributions, and 4) the effect of initial deformation of curved panel on the flight time to the onset of flutter. Compared with the results of aerothermal-aeroelastic one-way coupling, it is revealed that the two-way coupling which induces decrease of the flight time to the onset of flutter is more dangerous. In addition, importance should be attached to this method in actual analysis.展开更多
基金supported partly by the National Natural Science Foundation of China (Nos.11302011, 11402013,11372023,11672018)the National Key Research and Development Program (No.2016YFB0200703)the Fundamental Research Funds for the Central Universities(No.YWF-14-HKXY-006)
文摘Several types of coupling methods for resolving aerothermoelastic problems associated with hypersonic wings are summarized,and the appropriate coupling methods for engineering calculations are selected.Then,the calculation and analysis methods for the subdisciplines in this field are introduced,and the time step issue is discussed.A two-way-coupling rapid static aerothermoelastic method for analyzing hypersonic wings is proposed.This method considers thermal effects and is used to conduct an aerothermoelastic response analysis for a hypersonic wing.In addition,the aerodynamic force,heat flux,structural deformation and temperature field are obtained.The following three conclusions are drawn.First,the heating effect has a significant impact on the static aeroelastic response of hypersonic wings;therefore,thermal protection shields are essential.Second,the application of thermal protection shields reduces the differences in the calculation results between the one-and two-way-coupling methods.Third,hypersonic wings exhibit large thermal deformation under high-temperature environments,and in certain cases,the thermal deformation is even larger than the deformation caused by aerodynamic force.
文摘A method to compute aerothermal-aeroelastic two-way coupling for hypersonic curved panel flutter is proposed. The aero-therrno-elastic governing equations of a simply-supported two dimensional curved panel are developed based on the von K'arrn'an geometrically non-linear theory. The Galerkin approach is used to simplify the equations into discrete forms, which are solved by the fourth-order Ronger-Kutta method. The third-order piston theory is applied to the aerodynamics. The Eck- ert's reference temperature method and the panel heat flux formula are used to compute the aerodynamic heat flux. Several important effects are included, namely 1) two-way coupling considering the effect of elastic deformation on aerodynamic heating and aerodynamic heating on stiffness of structure, 2) accumulation of the aerodynamic heating in real cruise, 3) arbitrary, non-uniform, in-plane and through-thickness temperature distributions, and 4) the effect of initial deformation of curved panel on the flight time to the onset of flutter. Compared with the results of aerothermal-aeroelastic one-way coupling, it is revealed that the two-way coupling which induces decrease of the flight time to the onset of flutter is more dangerous. In addition, importance should be attached to this method in actual analysis.