期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Large Deviations and Moderate Deviations for Kernel Density Estimators of Directional Data 被引量:1
1
作者 Fu Qing GAO li na li 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第5期937-950,共14页
Let fn be the non-parametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sp... Let fn be the non-parametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere Sd-1. It is proved that if the kernel function is a function with bounded variation and the density function f of the random variables is continuous, then large deviation principle and moderate deviation principle for {sup x∈sd-1 |fn(x) - E(fn(x))|, n ≥ 1} hold. 展开更多
关键词 kernel density estimator directional data moderate deviations large deviations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部