橄榄石结构的LiFePO_(4)正极材料因其多重优势被广泛应用于新能源汽车和储能领域,但其较差的电导率和缓慢的锂离子扩散速率限制了其低温和倍率等性能。元素掺杂被认为是一种改善正极材料倍率、低温等性能的有效策略。采用固相法合成了...橄榄石结构的LiFePO_(4)正极材料因其多重优势被广泛应用于新能源汽车和储能领域,但其较差的电导率和缓慢的锂离子扩散速率限制了其低温和倍率等性能。元素掺杂被认为是一种改善正极材料倍率、低温等性能的有效策略。采用固相法合成了稀土金属铕掺杂的Li Fe_(1-x)Eu_(x)PO_(4)/C正极材料,并研究了铕掺杂量对Li Fe PO_(4)形貌、结构和电化学性能的影响。结果表明,铕掺杂能够改善Li Fe PO_(4)/C的电化学性能,其中Li Fe_(0.97)Eu_(0.03)PO_(4)/C表现出最佳的倍率、低温和循环性能,其组成的纽扣电池在20C高倍率下放电比容量为95.1 m A·h/g(较Li Fe PO_(4)/C提升57.7%),在低温(-20℃、0.1C)下的放电比容量为81.5 m A·h/g(较Li Fe PO_(4)/C提升73.8%),1C下经200次循环后其容量保持率为96.43%(较Li Fe PO_(4)/C高出2.46%)。X射线衍射分析和扫描电镜分析结果表明,铕的掺入能增大Li Fe PO_(4)的晶胞体积,降低Li和O原子之间的结合能,从而提高锂离子的扩散速率。电化学交流阻抗测试结果表明,Li Fe_(0.97)Eu_(0.03)PO_(4)/C表现出最低的电荷转移电阻和最高的锂离子扩散系数,其锂离子扩散系数比未掺杂的Li Fe PO_(4)/C高出2个数量级,这解释了其出色的倍率、低温和循环性能。展开更多
Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ...Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ratio,the transfection efficiency in the hepatoma cells was the highest with a slow release effect.Bio-GC nanomaterials exhibit the protective effect of preventing the gene from nuclease degradation,and can target the transfection into hepatoma cells by combination with galactose and biotin receptors.The transfection rate was inhibited by the competition of galactose and biotin.Bio-GC nanomaterials were imported into cells’cytoplasm by their receptors,followed by the imported exogenous gene transfected into the cells.Bio-GC nanomaterials can also cause inhibitory activity in the hepatoma cells in the model of orthotopic liver transplantation in mice,by carrying the gene through the blood to the hepatoma tissue.Taken together,bio-GC nanomaterials act as gene vectors with the activity of protecting the gene from DNase degradation,improving the rate of transfection in hepatoma cells,and transporting the gene into the cytoplasm in vitro and in vivo.Therefore,they are efficient hepatoma-targeting gene carriers.展开更多
In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, whi...In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.展开更多
Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain uncle...Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.展开更多
文摘橄榄石结构的LiFePO_(4)正极材料因其多重优势被广泛应用于新能源汽车和储能领域,但其较差的电导率和缓慢的锂离子扩散速率限制了其低温和倍率等性能。元素掺杂被认为是一种改善正极材料倍率、低温等性能的有效策略。采用固相法合成了稀土金属铕掺杂的Li Fe_(1-x)Eu_(x)PO_(4)/C正极材料,并研究了铕掺杂量对Li Fe PO_(4)形貌、结构和电化学性能的影响。结果表明,铕掺杂能够改善Li Fe PO_(4)/C的电化学性能,其中Li Fe_(0.97)Eu_(0.03)PO_(4)/C表现出最佳的倍率、低温和循环性能,其组成的纽扣电池在20C高倍率下放电比容量为95.1 m A·h/g(较Li Fe PO_(4)/C提升57.7%),在低温(-20℃、0.1C)下的放电比容量为81.5 m A·h/g(较Li Fe PO_(4)/C提升73.8%),1C下经200次循环后其容量保持率为96.43%(较Li Fe PO_(4)/C高出2.46%)。X射线衍射分析和扫描电镜分析结果表明,铕的掺入能增大Li Fe PO_(4)的晶胞体积,降低Li和O原子之间的结合能,从而提高锂离子的扩散速率。电化学交流阻抗测试结果表明,Li Fe_(0.97)Eu_(0.03)PO_(4)/C表现出最低的电荷转移电阻和最高的锂离子扩散系数,其锂离子扩散系数比未掺杂的Li Fe PO_(4)/C高出2个数量级,这解释了其出色的倍率、低温和循环性能。
基金Funded by the Scientific Research Project of Shanghai Municipal Health Commission(No.201940430)。
文摘Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ratio,the transfection efficiency in the hepatoma cells was the highest with a slow release effect.Bio-GC nanomaterials exhibit the protective effect of preventing the gene from nuclease degradation,and can target the transfection into hepatoma cells by combination with galactose and biotin receptors.The transfection rate was inhibited by the competition of galactose and biotin.Bio-GC nanomaterials were imported into cells’cytoplasm by their receptors,followed by the imported exogenous gene transfected into the cells.Bio-GC nanomaterials can also cause inhibitory activity in the hepatoma cells in the model of orthotopic liver transplantation in mice,by carrying the gene through the blood to the hepatoma tissue.Taken together,bio-GC nanomaterials act as gene vectors with the activity of protecting the gene from DNase degradation,improving the rate of transfection in hepatoma cells,and transporting the gene into the cytoplasm in vitro and in vivo.Therefore,they are efficient hepatoma-targeting gene carriers.
基金supported by the Natural Science Foundation of Qinghai Province, China (No.2021-ZJ940Q)。
文摘In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.
基金supported by the National Natural Science Foundation of China (Grant No.31971872)the Open Research Fund of State Key Laboratory of Hybrid Rice, China (Grant No.2022KF02)+3 种基金the National Natural Science Foundation of China (Grant Nos.32101755 and 32188102)the Zhejiang Provincial Natural Science Foundation, China (Grant No.LY22C130005)the Key Research and Development Program of Zhejiang Province, China (Grant No.2021C02056)the ‘Pioneer’ and ‘Leading Goose’ R&D Program of Zhejiang, China (Grant No.2023C02014)。
文摘Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.