The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnac...The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation.展开更多
In this paper, we proved a theorem on the orthogonal decomposition of a flatsymmetric bilinear form. If the nullity space of a flat symmetric bilinear formis not too large, it can be decomposed into two bilinear forms...In this paper, we proved a theorem on the orthogonal decomposition of a flatsymmetric bilinear form. If the nullity space of a flat symmetric bilinear formis not too large, it can be decomposed into two bilinear forms, one of which isnull, the other is flat and has a large nullity.展开更多
基金Funded by the National Natural Science Foundation of China(No.52071065)Fundamental Research Funds for the Central Universities(No.N2007007)。
文摘The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation.
文摘In this paper, we proved a theorem on the orthogonal decomposition of a flatsymmetric bilinear form. If the nullity space of a flat symmetric bilinear formis not too large, it can be decomposed into two bilinear forms, one of which isnull, the other is flat and has a large nullity.