In order to understand the dynamics of granular flow on an erodible base soil,in this paper,a series of material point method-based granular column collapse tests were conducted to investigate numerically the mobility...In order to understand the dynamics of granular flow on an erodible base soil,in this paper,a series of material point method-based granular column collapse tests were conducted to investigate numerically the mobility and dynamic erosion process of granular flow subjected to the complex settings,i.e.,the aspect ratio,granular mass,friction and dilatancy resistance,gravity and presence of water.A set of power scaling laws were proposed to describe the final deposit characteristics of granular flow by the relations of the normalized run-out distance and the normalized final height of granular flow against the aspect ratio,being greatly affected by the complex geological settings,e.g.,granular mass,the friction and dilatancy resistance of granular soil,and presence of water in granular flow.An index of the coefficient of friction of granular soil was defined as a ratio of the target coefficient of friction over the initial coefficient of friction to quantify the scaling extent of friction change(i.e.,friction strengthening or weakening).There is a characteristic aspect ratio of granular column corresponding to the maximum mobility of granular flow with the minimum index of the apparent coefficient of friction.The index of the repose coefficient of friction of granular flow decreased gradually with the increase in aspect ratio because higher potential energy of granular column at a larger aspect ratio causes a larger kinetic energy of granular soil to weaken the friction of granular soil as a kind of velocity-related friction weakening.An increase in granular mass reduces gradually the indexes of the apparent and repose coefficients of friction of granular soil to enhance the mobility of granular flow.The mobility of granular flow increases gradually with the decrease in friction angle or increase in dilatancy angle of granular soil.However,the increase of gravity accelerates granular flow but showing the same final deposit profile without any dependence on gravity.The mobility of granular flow increases gradually by lowering the indexes of the apparent and repose coefficients of friction of granular flow while changing the surroundings,in turn,the dry soil,submerged soil and saturated soil,implying a gradually increased excessive mobility of granular flow with the friction weakening of granular soil.Presence of water in granular flow may be a potential catalyzer to yield a long run-out granular flow,as revealed in comparison of water-absent and water-present granular flows.In addition,the dynamic erosion and entrainment of based soil induced by granular flow subjected to the complex geological settings,i.e.,the aspect ratio,granular mass,gravity,friction and dilatancy resistance,and presence of water,were comprehensively investigated as well.展开更多
On May 12, 2008, a magnitude 8.0 earthquake hit Wenchuan County, Sichuan Province resulted in great loss of life and properties.Besides, abundant landslides and slope failures were triggered in the most seriously hit ...On May 12, 2008, a magnitude 8.0 earthquake hit Wenchuan County, Sichuan Province resulted in great loss of life and properties.Besides, abundant landslides and slope failures were triggered in the most seriously hit areas and caused disastrous damages to infrastructures and public facilities.Moreover, abundant unstable slopes caused by the quake have the potential to cause damages for a considerable long period of time.The variety of these slopes and the corresponding treatments are connected with the topographical and geological conditions of the sites.It is decided to document and identify some of these major slope instabilities caused by the earthquake and their treatments.The paper shows the condition of a road in Dujiangyan through in situ explorations.The case history showed significant implications to the reconstruction of the quake-hit regions and future disaster prevention and management works.展开更多
In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has be...In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has been used to investigate the impact of granular avalanches and debris flows on retaining walls.The debris is modeled as two dimensional circular disks that interact through frictional sliding contacts.The basic equations that control the deformation and motion of the particles are introduced.A series of numerical experiments were conducted on an idealized debris slide impacting a retaining wall.The parametric study has been performed to examine the influences of slope geometry,travel distance of the sliding mass,wall position,and surface friction on the impact force exerted on the wall.Results show that:1) the force achieves its maximum value when slope angle is equal to 60°,as it varies from 30° to 75°;2) an approximate linear relationship between the impact force and the storage area length is determined.展开更多
According to theory of unsaturated soil strength and Green-Ampt model, an analysis method based on limit equilibrium theory is introduced to consider rainfall infiltration effects in loess slope stability analysis. Th...According to theory of unsaturated soil strength and Green-Ampt model, an analysis method based on limit equilibrium theory is introduced to consider rainfall infiltration effects in loess slope stability analysis. The relationships between wetting band depth and surficial stability of slopes are analyzed. It is found that the infiltration adds to the weight of the soil and at the same time reduces the shear strength provided by matric suction of the soil. The wetting band depth plays a key role in the stability of slopes. The minimum rainfall intensity and the minimum rainfall duration needed to infiltrate to the wetting front depth are calculated based on the Green-Ampt model. The method in this paper will contribute to the predication of slope stability considering rainfall characteristics.展开更多
Among the triggering factors of postearthquake bedrock landslides, rainfall plays an important role. However, with slope variation, the mechanism of its effects on the failure of rock landslides is not dear. Here, fro...Among the triggering factors of postearthquake bedrock landslides, rainfall plays an important role. However, with slope variation, the mechanism of its effects on the failure of rock landslides is not dear. Here, from the viewpoint of fracture mechanics, and based on post-earthquake conditions, the mechanisms of crack propagation, water infiltration and development of the sliding surface were investigated. Then, according to the upper boundary theorem, the effects of water infiltrated into fractures on the stability of rock slopes were analyzed quantitatively. Finally, an example is presented to verify the theory. The results show that the propagation and coalescence of cracks and the lubrication of incipient sliding surfaces are the main causes of the failure of post-earthquake rock landslides in response to rainfall.展开更多
This paper using finite element method analyzed present slope and contrasted it with the original slope shape, plastic deformation figures and stress changes. At the same time, some deformation figures and stress figu...This paper using finite element method analyzed present slope and contrasted it with the original slope shape, plastic deformation figures and stress changes. At the same time, some deformation figures and stress figures were got, and the potential sliding surface and the stability coefficient were calculated. The conclusions are: This slope is provided with sliding conditions and began to slide when its foot was cut without any support in time. At the foot of the slope, some support measures must be taken to keep the slope steady and the slope surface need to be stabilzed to protect the lower people. These suggestions and conclusions are also useful to the slope constructions and succeeding inspecting works.展开更多
【正】For the last 4-5 years,we,the editors of the Journal of Palaeogeo graphy(in Chinese)and the Journal of Palaeogeography(in English),and the teachers from College of Geosciences,China University of Petroleum(Beiji...【正】For the last 4-5 years,we,the editors of the Journal of Palaeogeo graphy(in Chinese)and the Journal of Palaeogeography(in English),and the teachers from College of Geosciences,China University of Petroleum(Beijing)altogether,taking spare time after our routine editing and teaching work,participated in the designation,organization,writing,editing and revision processes of the Sedimentology of China(Second Edition).We put great efforts into this great work which represents the latest research results of various domains of sedimentology in China.We specially published this展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant no.U22A20603)Sichuan Science and Technology Program-China(Grant No.2023ZYD0149)CAS"Light of West China"Program-China(Grant No.Fangwei Yu).In addition,a special acknowledgement should be expressed to a famous Chinese television drama:My Chief and My Regiment that accompanied me(Dr.Fangwei Yu)through the loneliness time of completing this study.
文摘In order to understand the dynamics of granular flow on an erodible base soil,in this paper,a series of material point method-based granular column collapse tests were conducted to investigate numerically the mobility and dynamic erosion process of granular flow subjected to the complex settings,i.e.,the aspect ratio,granular mass,friction and dilatancy resistance,gravity and presence of water.A set of power scaling laws were proposed to describe the final deposit characteristics of granular flow by the relations of the normalized run-out distance and the normalized final height of granular flow against the aspect ratio,being greatly affected by the complex geological settings,e.g.,granular mass,the friction and dilatancy resistance of granular soil,and presence of water in granular flow.An index of the coefficient of friction of granular soil was defined as a ratio of the target coefficient of friction over the initial coefficient of friction to quantify the scaling extent of friction change(i.e.,friction strengthening or weakening).There is a characteristic aspect ratio of granular column corresponding to the maximum mobility of granular flow with the minimum index of the apparent coefficient of friction.The index of the repose coefficient of friction of granular flow decreased gradually with the increase in aspect ratio because higher potential energy of granular column at a larger aspect ratio causes a larger kinetic energy of granular soil to weaken the friction of granular soil as a kind of velocity-related friction weakening.An increase in granular mass reduces gradually the indexes of the apparent and repose coefficients of friction of granular soil to enhance the mobility of granular flow.The mobility of granular flow increases gradually with the decrease in friction angle or increase in dilatancy angle of granular soil.However,the increase of gravity accelerates granular flow but showing the same final deposit profile without any dependence on gravity.The mobility of granular flow increases gradually by lowering the indexes of the apparent and repose coefficients of friction of granular flow while changing the surroundings,in turn,the dry soil,submerged soil and saturated soil,implying a gradually increased excessive mobility of granular flow with the friction weakening of granular soil.Presence of water in granular flow may be a potential catalyzer to yield a long run-out granular flow,as revealed in comparison of water-absent and water-present granular flows.In addition,the dynamic erosion and entrainment of based soil induced by granular flow subjected to the complex geological settings,i.e.,the aspect ratio,granular mass,gravity,friction and dilatancy resistance,and presence of water,were comprehensively investigated as well.
基金supported by the 973 Program of China (Grant No. 2008CB425803the Open Fund of the Key Laboratory of Marine Geology and Environment, China Academy of Sciences (Grant No. MGE2008KG04)the Open Fund of the Key Laboratory of Mountain Hazards and Surface Process, CAS.
文摘On May 12, 2008, a magnitude 8.0 earthquake hit Wenchuan County, Sichuan Province resulted in great loss of life and properties.Besides, abundant landslides and slope failures were triggered in the most seriously hit areas and caused disastrous damages to infrastructures and public facilities.Moreover, abundant unstable slopes caused by the quake have the potential to cause damages for a considerable long period of time.The variety of these slopes and the corresponding treatments are connected with the topographical and geological conditions of the sites.It is decided to document and identify some of these major slope instabilities caused by the earthquake and their treatments.The paper shows the condition of a road in Dujiangyan through in situ explorations.The case history showed significant implications to the reconstruction of the quake-hit regions and future disaster prevention and management works.
基金support from the 973 Program of China (Grant No. 2008CB425803)the West Light Foundation of the CAS (Grant No. 09R2200200)
文摘In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has been used to investigate the impact of granular avalanches and debris flows on retaining walls.The debris is modeled as two dimensional circular disks that interact through frictional sliding contacts.The basic equations that control the deformation and motion of the particles are introduced.A series of numerical experiments were conducted on an idealized debris slide impacting a retaining wall.The parametric study has been performed to examine the influences of slope geometry,travel distance of the sliding mass,wall position,and surface friction on the impact force exerted on the wall.Results show that:1) the force achieves its maximum value when slope angle is equal to 60°,as it varies from 30° to 75°;2) an approximate linear relationship between the impact force and the storage area length is determined.
文摘According to theory of unsaturated soil strength and Green-Ampt model, an analysis method based on limit equilibrium theory is introduced to consider rainfall infiltration effects in loess slope stability analysis. The relationships between wetting band depth and surficial stability of slopes are analyzed. It is found that the infiltration adds to the weight of the soil and at the same time reduces the shear strength provided by matric suction of the soil. The wetting band depth plays a key role in the stability of slopes. The minimum rainfall intensity and the minimum rainfall duration needed to infiltrate to the wetting front depth are calculated based on the Green-Ampt model. The method in this paper will contribute to the predication of slope stability considering rainfall characteristics.
基金supported by The National Basic Research Program of China (also called 973 Program) (Grant No. 2008CB425802)the National Natural Science Foundation of China (Grant No. 40872181)
文摘Among the triggering factors of postearthquake bedrock landslides, rainfall plays an important role. However, with slope variation, the mechanism of its effects on the failure of rock landslides is not dear. Here, from the viewpoint of fracture mechanics, and based on post-earthquake conditions, the mechanisms of crack propagation, water infiltration and development of the sliding surface were investigated. Then, according to the upper boundary theorem, the effects of water infiltrated into fractures on the stability of rock slopes were analyzed quantitatively. Finally, an example is presented to verify the theory. The results show that the propagation and coalescence of cracks and the lubrication of incipient sliding surfaces are the main causes of the failure of post-earthquake rock landslides in response to rainfall.
文摘This paper using finite element method analyzed present slope and contrasted it with the original slope shape, plastic deformation figures and stress changes. At the same time, some deformation figures and stress figures were got, and the potential sliding surface and the stability coefficient were calculated. The conclusions are: This slope is provided with sliding conditions and began to slide when its foot was cut without any support in time. At the foot of the slope, some support measures must be taken to keep the slope steady and the slope surface need to be stabilzed to protect the lower people. These suggestions and conclusions are also useful to the slope constructions and succeeding inspecting works.
文摘【正】For the last 4-5 years,we,the editors of the Journal of Palaeogeo graphy(in Chinese)and the Journal of Palaeogeography(in English),and the teachers from College of Geosciences,China University of Petroleum(Beijing)altogether,taking spare time after our routine editing and teaching work,participated in the designation,organization,writing,editing and revision processes of the Sedimentology of China(Second Edition).We put great efforts into this great work which represents the latest research results of various domains of sedimentology in China.We specially published this