To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station ...To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station without massive raw data exchange.However,heterogeneous computing and communication resources of vehicles cause straggler effect which weakens the reliability of federated learning.Dropping out vehicles with limited resources confines the training data.As a result,the accuracy and applicability of federated learning models will be reduced.To mitigate the straggler effect and improve performance of federated learning,we propose a reconfigurable intelligent surface(RIS)-assisted federated learning framework to enhance the communication reliability for parameter transmission in the IoV.Furthermore,we optimize the phase shift of RIS to achieve a more reliable communication environment.In addition,we define vehicular competence to measure both vehicular trustworthiness and resources.Based on the vehicular competence,the straggler effect is mitigated where training tasks of computing stragglers are offloaded to surrounding vehicles with high competence.The experiment results verify that our proposed framework can improve the reliability of federated learning in terms of computing and communication in the IoV.展开更多
为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)...为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)作为BP神经网络的激活函数,通过粒子群优化算法对BP神经网络权值和阈值进行动态寻优,构建PSO-IBP模型。通过采集纯电动汽车电驱总成故障数据,分别对PSO-IBP神经网络模型、BP神经网络模型和概率神经网络(Probabilistic Neural Network,PNN)模型进行训练与仿真,结果表明,相比于BP神经网络方法及概率神经网络方法,基于PSO-IBP神经网络模型的纯电动汽车电驱总成故障诊断方法具有更高的准确率。展开更多
在人类活动和气候变化的复杂影响下,广东省东江流域的降雨特征发生了明显改变,为精准识别其时空变化特征,基于流域34个雨量站1956—2021年逐月长序列降雨数据,采用集中度、集中期、Ordinary Least Square回归法、Mann-Kendall检验法、滑...在人类活动和气候变化的复杂影响下,广东省东江流域的降雨特征发生了明显改变,为精准识别其时空变化特征,基于流域34个雨量站1956—2021年逐月长序列降雨数据,采用集中度、集中期、Ordinary Least Square回归法、Mann-Kendall检验法、滑动t检验法、一维连续小波等多种方法,对广东省东江流域上下游降雨的年内分布特征,年际变化的趋势性、突变性和周期性特征以及空间变化规律开展多角度分析。结果表明:广东省东江流域降雨量从东北向西南递减;从上游到下游,年内降雨集中期从6月延迟到7月份,降雨由减少过渡到弱增长趋势;下游突变性较上游显著,上游周期性强于下游;上下游降雨主周期一致,均为17 a。研究成果可为广东省东江流域降雨预报及水资源开发利用等提供支撑。展开更多
基金supported in part by the Fundamental Research Funds for the Central Universities (2022JBQY004)the Beijing Natural Science Foundation L211013+4 种基金the Basic Research Program under Grant JCKY2022XXXX145the National Natural Science Foundation of China (No. 62221001,62201030)the Science and Technology Research and Development Plan of China Railway Co., Ltd (No. K2022G018)the project of CHN Energy Shuohuang Railway under Grant SHTL-2332the China Postdoctoral Science Foundation 2021TQ0028,2021M700369
文摘To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station without massive raw data exchange.However,heterogeneous computing and communication resources of vehicles cause straggler effect which weakens the reliability of federated learning.Dropping out vehicles with limited resources confines the training data.As a result,the accuracy and applicability of federated learning models will be reduced.To mitigate the straggler effect and improve performance of federated learning,we propose a reconfigurable intelligent surface(RIS)-assisted federated learning framework to enhance the communication reliability for parameter transmission in the IoV.Furthermore,we optimize the phase shift of RIS to achieve a more reliable communication environment.In addition,we define vehicular competence to measure both vehicular trustworthiness and resources.Based on the vehicular competence,the straggler effect is mitigated where training tasks of computing stragglers are offloaded to surrounding vehicles with high competence.The experiment results verify that our proposed framework can improve the reliability of federated learning in terms of computing and communication in the IoV.
文摘为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)作为BP神经网络的激活函数,通过粒子群优化算法对BP神经网络权值和阈值进行动态寻优,构建PSO-IBP模型。通过采集纯电动汽车电驱总成故障数据,分别对PSO-IBP神经网络模型、BP神经网络模型和概率神经网络(Probabilistic Neural Network,PNN)模型进行训练与仿真,结果表明,相比于BP神经网络方法及概率神经网络方法,基于PSO-IBP神经网络模型的纯电动汽车电驱总成故障诊断方法具有更高的准确率。
文摘在人类活动和气候变化的复杂影响下,广东省东江流域的降雨特征发生了明显改变,为精准识别其时空变化特征,基于流域34个雨量站1956—2021年逐月长序列降雨数据,采用集中度、集中期、Ordinary Least Square回归法、Mann-Kendall检验法、滑动t检验法、一维连续小波等多种方法,对广东省东江流域上下游降雨的年内分布特征,年际变化的趋势性、突变性和周期性特征以及空间变化规律开展多角度分析。结果表明:广东省东江流域降雨量从东北向西南递减;从上游到下游,年内降雨集中期从6月延迟到7月份,降雨由减少过渡到弱增长趋势;下游突变性较上游显著,上游周期性强于下游;上下游降雨主周期一致,均为17 a。研究成果可为广东省东江流域降雨预报及水资源开发利用等提供支撑。