Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics...Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.展开更多
Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,20...Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).展开更多
We developed a new preparation to protect probiotic cells from adverse environmental conditions and improve their livability,which is called Lactobacillus casei-Sodium alginate-Chitosan (LSC).The LSC was prepared by m...We developed a new preparation to protect probiotic cells from adverse environmental conditions and improve their livability,which is called Lactobacillus casei-Sodium alginate-Chitosan (LSC).The LSC was prepared by mixing probiotics with sodium alginate-chitosan sol.The preparation contained complex calcium ions,which were released in the acidic environment of gastric juice,thus crosslinking to form in-situ gel.Different proportions of sodium alginate-chitosan were prepared to add to simulate gastrointestinal fluid to get the best ratio.The optimal ratio of LSC preparation was compared with traditional gel microspheres to observe the survival effect of probiotics in gastrointestinal fluid environment.Compared with sodium alginate sol,the porosity of sodium alginate-chitosan sol is lower,which is beneficial to the protection of probiotics.When the ratio of chitosan to sodium alginate is 1.5:1.5 (w/v),the protective effect is the best.The protective ability of LSC is 64 times that of traditional microspheres,and it has the potential of synergistic anti-tumor.A probiotic preparation with simple preparation process and better protection effect compared with traditional microspheres was prepared,which has joint anti-tumor potential.展开更多
Textile production has received considerable attention owing to its significance in production value,the complexity of its manufacturing processes and the extensive reach of its supply chains.However,textile industry ...Textile production has received considerable attention owing to its significance in production value,the complexity of its manufacturing processes and the extensive reach of its supply chains.However,textile industry consumes substantial energy and materials and emits greenhouse gases that severely harm the environment.In addressing this challenge,the concept of sustainable production offers crucial guidance for the sustainable development of the textile industry.Low-carbon manufacturing technologies provide robust technical support for the textile industry to transition to a low-carbon model by optimizing production processes,enhancing energy efficiency and minimizing material waste.Consequently,low-carbon manufacturing technologies have gradually been implemented in sustainable textile production scenarios.However,while research on low-carbon manufacturing technologies for textile production has advanced,these studies predominantly concentrate on theoretical methods,with relatively limited exploration of practical applications.To address this gap,a thorough overview of carbon emission management methods and tools in textile production,as well as the characteristics and influencing factors of carbon emissions in key textile manufacturing processes is presented to identify common issues.Additionally,two new concepts,carbon knowledge graph and carbon traceability,are introduced,offering strategic recommendations and application directions for the low-carbon development of sustainable textile production.Beginning with seven key aspects of sustainable textile production,the characteristics of carbon emissions and their influencing factors in key textile manufacturing process are systematically summarized.The aim is to provide guidance and optimization strategies for future emission reduction efforts by exploring the carbon emission situations and influencing factors at each stage.Furthermore,the potential and challenges of carbon knowledge graph technology are summarized in achieving carbon traceability,and several research ideas and suggestions are proposed.展开更多
An analytic hierarchy process(AHP)was employed to establish a landscape value evaluation model for 20 common species of perennial flowers in the flower border of Hefei City.With the overarching objective of determinin...An analytic hierarchy process(AHP)was employed to establish a landscape value evaluation model for 20 common species of perennial flowers in the flower border of Hefei City.With the overarching objective of determining the application value of the flower border,10 evaluation factors were identified and subsequently classified into 3 distinct grades.Grade I(L>2.5)was defined as perennial flower resources with the highest development and utilization value,including only one species of Salvia farinacea.Grade II(2.0≤L≤2.5)was defined as perennial flower varieties suitable for most areas,encompassing 9 species of plants,such asTaraxacummongolicum.Grade III(L<2.0)was defined as perennial flower varieties with low application value,encompassing 10 species of plants,such asRuellia brittoniana,but lacking the value of further popularization and application.Consequently,the proportion of their application in the flower border should be reduced.The evaluation results can serve as a theoretical foundation for the implementation of perennial flowers in urban flower borders.展开更多
Thispaper has investigated the coordination and supramolecular assemblies of alkali metal ions,cucurbit[5]uril(Q[5]),and[CdCl_(4)]^(2-)to confirm whether[CdCl_(4)]^(2-)can produce the“honeycomb effect”,induce coordi...Thispaper has investigated the coordination and supramolecular assemblies of alkali metal ions,cucurbit[5]uril(Q[5]),and[CdCl_(4)]^(2-)to confirm whether[CdCl_(4)]^(2-)can produce the“honeycomb effect”,induce coordination of alkali metal ions to Q[5],and form linear coordination polymers.In this work,the effect of alkali metal ions on the construction of Q[5]-Cd^(2+)ion system under acidic conditions was investigated.Five complexes were successfully obtained by solvent evaporation method.Among the five crystal structures obtained,it can be observed that the presence of[CdCl_(4)]^(2-)did not result in the complexation of alkali metal ions by the Q[5]molecule.Instead,a bowl-like Cd^(2+)@Q[5]complex was formed.Indeed,[CdCl_(4)]^(2-)did not produce the honeycomb effect but led to the formation of Q[5]-based honeycomb frameworks with hexagonal cellsoccupied by[CdCl_(4)]^(2-).The experimental results show that cadmium ion showed stronger ability to coordinate to Q[5]in HCl solution.展开更多
An acid-sensitive delivery system based on acylhydrazone bond was developed for high loading and efficient delivery of doxorubicin.Doxorubicin(DOX)was covalently combined with dihydrazide adipate to form acid-sensitiv...An acid-sensitive delivery system based on acylhydrazone bond was developed for high loading and efficient delivery of doxorubicin.Doxorubicin(DOX)was covalently combined with dihydrazide adipate to form acid-sensitive hydrazone bond based on Schiff base reaction,then the intermediate was covalently combined with carboxymethyl chitosan through amide bond to form polymeric prodrugs,and nanoparticles were formed through self-assembling.Moreover,the structural and particle properties of CMCS-ADH-DOX were characterized by ultraviolet visible near infrared spectrophotometry(UV),nuclear magnetic resonance spectroscopy(^(1)H-NMR),fourier transform infrared spectroscopy(FT-IR),dynamic light scattering(DLS),and transmission electron microscopy(TEM).The mean diameter of the self-assembled nanoparticles is 165 nm,while the morphology is a relatively uniform spherical shape.Moreover,these DOXloaded nanoparticles showed pH-triggered drug release behavior.Compared with free DOX,CAD NPs showed lower toxic side effects in L929 cells and similar toxicity in 4T1 cells.The experimental results indicate that the CMCS-ADH-DOX nanoparticles may be used as an acid-sensitive targeted delivery system with good application prospect for cancer.展开更多
基金Supported by the PetroChina Science and Technology Major Project(2016E0201)。
文摘Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.
基金supported by Qinghai Provincial Association for Science and Technology Youth Science and Technology Talent Support Project(Grant No.2023QHSKXRCTJ47)Exploration Foundation of Qinghai Province(Grant No.2023085029ky004)。
文摘Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).
基金Funded by the National Natural Science Foundation of China(No.52003211)。
文摘We developed a new preparation to protect probiotic cells from adverse environmental conditions and improve their livability,which is called Lactobacillus casei-Sodium alginate-Chitosan (LSC).The LSC was prepared by mixing probiotics with sodium alginate-chitosan sol.The preparation contained complex calcium ions,which were released in the acidic environment of gastric juice,thus crosslinking to form in-situ gel.Different proportions of sodium alginate-chitosan were prepared to add to simulate gastrointestinal fluid to get the best ratio.The optimal ratio of LSC preparation was compared with traditional gel microspheres to observe the survival effect of probiotics in gastrointestinal fluid environment.Compared with sodium alginate sol,the porosity of sodium alginate-chitosan sol is lower,which is beneficial to the protection of probiotics.When the ratio of chitosan to sodium alginate is 1.5:1.5 (w/v),the protective effect is the best.The protective ability of LSC is 64 times that of traditional microspheres,and it has the potential of synergistic anti-tumor.A probiotic preparation with simple preparation process and better protection effect compared with traditional microspheres was prepared,which has joint anti-tumor potential.
基金Natural Science Foundation of Shanghai,China (No. 21ZR1400800)。
文摘Textile production has received considerable attention owing to its significance in production value,the complexity of its manufacturing processes and the extensive reach of its supply chains.However,textile industry consumes substantial energy and materials and emits greenhouse gases that severely harm the environment.In addressing this challenge,the concept of sustainable production offers crucial guidance for the sustainable development of the textile industry.Low-carbon manufacturing technologies provide robust technical support for the textile industry to transition to a low-carbon model by optimizing production processes,enhancing energy efficiency and minimizing material waste.Consequently,low-carbon manufacturing technologies have gradually been implemented in sustainable textile production scenarios.However,while research on low-carbon manufacturing technologies for textile production has advanced,these studies predominantly concentrate on theoretical methods,with relatively limited exploration of practical applications.To address this gap,a thorough overview of carbon emission management methods and tools in textile production,as well as the characteristics and influencing factors of carbon emissions in key textile manufacturing processes is presented to identify common issues.Additionally,two new concepts,carbon knowledge graph and carbon traceability,are introduced,offering strategic recommendations and application directions for the low-carbon development of sustainable textile production.Beginning with seven key aspects of sustainable textile production,the characteristics of carbon emissions and their influencing factors in key textile manufacturing process are systematically summarized.The aim is to provide guidance and optimization strategies for future emission reduction efforts by exploring the carbon emission situations and influencing factors at each stage.Furthermore,the potential and challenges of carbon knowledge graph technology are summarized in achieving carbon traceability,and several research ideas and suggestions are proposed.
基金Sponsored by Landscape Value Evaluation of Perennial Flower Border Application for Open Field Cultivation in Hefei City(S202212216134)Natural Science Key Research Program for Colleges and Universities in Anhui Province(2023AH051816)Anhui General Teaching Research Project(2022jyxm665).
文摘An analytic hierarchy process(AHP)was employed to establish a landscape value evaluation model for 20 common species of perennial flowers in the flower border of Hefei City.With the overarching objective of determining the application value of the flower border,10 evaluation factors were identified and subsequently classified into 3 distinct grades.Grade I(L>2.5)was defined as perennial flower resources with the highest development and utilization value,including only one species of Salvia farinacea.Grade II(2.0≤L≤2.5)was defined as perennial flower varieties suitable for most areas,encompassing 9 species of plants,such asTaraxacummongolicum.Grade III(L<2.0)was defined as perennial flower varieties with low application value,encompassing 10 species of plants,such asRuellia brittoniana,but lacking the value of further popularization and application.Consequently,the proportion of their application in the flower border should be reduced.The evaluation results can serve as a theoretical foundation for the implementation of perennial flowers in urban flower borders.
文摘Thispaper has investigated the coordination and supramolecular assemblies of alkali metal ions,cucurbit[5]uril(Q[5]),and[CdCl_(4)]^(2-)to confirm whether[CdCl_(4)]^(2-)can produce the“honeycomb effect”,induce coordination of alkali metal ions to Q[5],and form linear coordination polymers.In this work,the effect of alkali metal ions on the construction of Q[5]-Cd^(2+)ion system under acidic conditions was investigated.Five complexes were successfully obtained by solvent evaporation method.Among the five crystal structures obtained,it can be observed that the presence of[CdCl_(4)]^(2-)did not result in the complexation of alkali metal ions by the Q[5]molecule.Instead,a bowl-like Cd^(2+)@Q[5]complex was formed.Indeed,[CdCl_(4)]^(2-)did not produce the honeycomb effect but led to the formation of Q[5]-based honeycomb frameworks with hexagonal cellsoccupied by[CdCl_(4)]^(2-).The experimental results show that cadmium ion showed stronger ability to coordinate to Q[5]in HCl solution.
基金Funded by the Industrial Technology Research Institute of Hubei Provincial Department of Science and Technology(No.2020DEB012)the Hubei Provincial Department of Science and Technology Support Enterprise Technology Innovation Development Project(No.2021BAB119)。
文摘An acid-sensitive delivery system based on acylhydrazone bond was developed for high loading and efficient delivery of doxorubicin.Doxorubicin(DOX)was covalently combined with dihydrazide adipate to form acid-sensitive hydrazone bond based on Schiff base reaction,then the intermediate was covalently combined with carboxymethyl chitosan through amide bond to form polymeric prodrugs,and nanoparticles were formed through self-assembling.Moreover,the structural and particle properties of CMCS-ADH-DOX were characterized by ultraviolet visible near infrared spectrophotometry(UV),nuclear magnetic resonance spectroscopy(^(1)H-NMR),fourier transform infrared spectroscopy(FT-IR),dynamic light scattering(DLS),and transmission electron microscopy(TEM).The mean diameter of the self-assembled nanoparticles is 165 nm,while the morphology is a relatively uniform spherical shape.Moreover,these DOXloaded nanoparticles showed pH-triggered drug release behavior.Compared with free DOX,CAD NPs showed lower toxic side effects in L929 cells and similar toxicity in 4T1 cells.The experimental results indicate that the CMCS-ADH-DOX nanoparticles may be used as an acid-sensitive targeted delivery system with good application prospect for cancer.