In this study, the impact of atmospherewave coupling on typhoon intensity was investigated using numerical simulations of an idealized typhoon in a coupled atmospherewaveocean modeling system. The coupling between atm...In this study, the impact of atmospherewave coupling on typhoon intensity was investigated using numerical simulations of an idealized typhoon in a coupled atmospherewaveocean modeling system. The coupling between atmosphere and sea surface waves considered the effects of wave state and sea sprays on airsea momentum flux, the atmospheric lowlevel dissipative heating, and the wavestateaffected sea spray heat flux. Several experiments were conducted to examine the impacts of wave state, sea sprays, and dissipative heating on an idealized typhoon system. Results show that considering the wave state and seasprayaffected seasurface roughness reduces typhoon intensity, while including dissipative heating intensifies the typhoon system. Taking into account sea spray heat flux also strengthens the typhoon system with increasing maximum wind speed and significant wave height. The overall impact of atmospherewave coupling makes a positive contribution to the intensification of the idealized typhoon system. The minimum central pressure simulated by the coupled atmospherewave experiment was 16.4 hPa deeper than that of the control run, and the maximum wind speed and significant wave height increased by 31% and 4%, respectively. Meanwhile, within the area beneath the typhoon center, the average total upward airsea heat flux increased by 22%, and the averaged latent heat flux increased more significantly by 31% compared to the uncoupled run.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos40830959,40921004 and 41076007)the Ministry of Science and Technology of China(Grant No2011BAC03B01)the US National Science Foundation(Grant NoAGS1043125)
文摘In this study, the impact of atmospherewave coupling on typhoon intensity was investigated using numerical simulations of an idealized typhoon in a coupled atmospherewaveocean modeling system. The coupling between atmosphere and sea surface waves considered the effects of wave state and sea sprays on airsea momentum flux, the atmospheric lowlevel dissipative heating, and the wavestateaffected sea spray heat flux. Several experiments were conducted to examine the impacts of wave state, sea sprays, and dissipative heating on an idealized typhoon system. Results show that considering the wave state and seasprayaffected seasurface roughness reduces typhoon intensity, while including dissipative heating intensifies the typhoon system. Taking into account sea spray heat flux also strengthens the typhoon system with increasing maximum wind speed and significant wave height. The overall impact of atmospherewave coupling makes a positive contribution to the intensification of the idealized typhoon system. The minimum central pressure simulated by the coupled atmospherewave experiment was 16.4 hPa deeper than that of the control run, and the maximum wind speed and significant wave height increased by 31% and 4%, respectively. Meanwhile, within the area beneath the typhoon center, the average total upward airsea heat flux increased by 22%, and the averaged latent heat flux increased more significantly by 31% compared to the uncoupled run.