Mold electromagnetic stirring technology for optimizing the flow of molten steel is now widely used in the continuous casting production process of high-quality steels.However,studies on the case that the center of th...Mold electromagnetic stirring technology for optimizing the flow of molten steel is now widely used in the continuous casting production process of high-quality steels.However,studies on the case that the center of the electromagnetic stirrer is located outside the mold have not been reported.Herein,the effect of the electromagnetic stirrer centered outside the mold on the steel flow field was studied in detail by means of numerical simulations.A Gauss meter was used to measure the magnetic induction intensity at different positions,currents,and frequencies.The test results were compared with the simulation results of electromagnetic stirring to calibrate and verify the accuracy of the electromagnetic model.Then,electromagnetic force was introduced into the flow field model as a source term to study its effect on the flow field under anomalous conditions.The results show that when the center of the electromagnetic stirrer is located outside the mold,the magnetic field strength is about twice as strong as that located inside the mold.This also leads to an increase in the flow velocity near the electromagnetic stirrer.As a result,the optimal electromagnetic stirring parameters(200 A,2.5 Hz)were specified when the center of the electromagnetic stirrer is located outside the mold.展开更多
The highly reversible insertion/extraction of large-radius K^+into electrode materials remains a tough goal,especially for con version-type materials.Herein,we design a current collector-integrated electrode(N-CoSe/Co...The highly reversible insertion/extraction of large-radius K^+into electrode materials remains a tough goal,especially for con version-type materials.Herein,we design a current collector-integrated electrode(N-CoSe/CoSe_(2)-C@Cu) as an advanced anode for potassium-ion battery(PIBs).The conductive CoSe/CoSe_(2) heterojunction with rich Se vacancy defects,conductive sp^2 N-doped carbon layer,and the elastic copper foil matrix can greatly accelerate the electron transfer and enhance the structural stability.Consequently,the well-designed N-CoSe/CoSe_(2)-C@Cu current collector-integrated electrode displays enhanced potassium storage performance with regard to a high capacity(325.1 mAh·g^(-1) at 0.1 A·g^(-1) after 200cycles),an exceptional rate capability(223.5 mAh·g^(-1) at2000 mA·g^(-1)),and an extraordinary long-term cycle stability(a capacity fading of only 0.019% per cycle over1200 cycles at 2000 mA·g^(-1)).Impressively,ex situ scanning electron microscopy(SEM) characterizations prove that the elastic structure of copper foil is merged into the cleverly designed N-CoSe/CoSe_(2)-C@Cu heterostructure,which buffers the deformation of structure and volume and greatly promotes the cycle life during the potassium/depotassium process.展开更多
基金The present work was financially supported by the China Postdoctoral Science Foundation(No.2023M730230)Special Funding Projects for Local Science and Technology Development guided by the Central Committee(No.YDZJSX2022C028)Fundamental Research Funds for the Central Universities(No.FRF-TP-22-053A1).
文摘Mold electromagnetic stirring technology for optimizing the flow of molten steel is now widely used in the continuous casting production process of high-quality steels.However,studies on the case that the center of the electromagnetic stirrer is located outside the mold have not been reported.Herein,the effect of the electromagnetic stirrer centered outside the mold on the steel flow field was studied in detail by means of numerical simulations.A Gauss meter was used to measure the magnetic induction intensity at different positions,currents,and frequencies.The test results were compared with the simulation results of electromagnetic stirring to calibrate and verify the accuracy of the electromagnetic model.Then,electromagnetic force was introduced into the flow field model as a source term to study its effect on the flow field under anomalous conditions.The results show that when the center of the electromagnetic stirrer is located outside the mold,the magnetic field strength is about twice as strong as that located inside the mold.This also leads to an increase in the flow velocity near the electromagnetic stirrer.As a result,the optimal electromagnetic stirring parameters(200 A,2.5 Hz)were specified when the center of the electromagnetic stirrer is located outside the mold.
基金financially supported by the National Natural Science Foundation of China (No.52371131)Beijing Nova Program (No.Z211100002121082)+2 种基金the Interdisciplinary Research Project for Young Teachers of University of Science and Technology Beijing (No.FRF-IDRY-21-013)the Project of State Key Laboratory of Explosion Science and Technology (No.QNKT23-05)Xiaomi Young Scholar Program。
文摘The highly reversible insertion/extraction of large-radius K^+into electrode materials remains a tough goal,especially for con version-type materials.Herein,we design a current collector-integrated electrode(N-CoSe/CoSe_(2)-C@Cu) as an advanced anode for potassium-ion battery(PIBs).The conductive CoSe/CoSe_(2) heterojunction with rich Se vacancy defects,conductive sp^2 N-doped carbon layer,and the elastic copper foil matrix can greatly accelerate the electron transfer and enhance the structural stability.Consequently,the well-designed N-CoSe/CoSe_(2)-C@Cu current collector-integrated electrode displays enhanced potassium storage performance with regard to a high capacity(325.1 mAh·g^(-1) at 0.1 A·g^(-1) after 200cycles),an exceptional rate capability(223.5 mAh·g^(-1) at2000 mA·g^(-1)),and an extraordinary long-term cycle stability(a capacity fading of only 0.019% per cycle over1200 cycles at 2000 mA·g^(-1)).Impressively,ex situ scanning electron microscopy(SEM) characterizations prove that the elastic structure of copper foil is merged into the cleverly designed N-CoSe/CoSe_(2)-C@Cu heterostructure,which buffers the deformation of structure and volume and greatly promotes the cycle life during the potassium/depotassium process.