期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Plume-lithosphere interaction in the Comei Large Igneous Province: Evidence from two types of mafic dykes in Gyangze, south Tibet, China
1
作者 Ya-ying Wang Ling-sen Zeng +6 位作者 li-e gao Li-long Yan Ling-hao Zhao Jia-hao gao Ying-long Di Guang-xu Li Yi-hong Tian 《China Geology》 CAS CSCD 2024年第1期80-90,共11页
Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.... Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous. 展开更多
关键词 OIB type diabase Comei Large Igneous Province Weakly enriched diabase Plume-lithosphere interaction Nb-Ta-Ti negative anomaly Kerguelen plume Geological survey engineering Tibet Plateau
下载PDF
Baddeleyite and zircon U-Pb ages of the ultramafic rocks in Chigu Tso area,Southeastern Tibet and their constraints on the timing of Comei Large Igneous Province 被引量:5
2
作者 Ya-ying Wang Ling-sen Zeng +8 位作者 Ling-hao Zhao li-e gao Jia-hao gao Zhao-ping Hu Hai-tao Wang Guang-xu Li Ying-long Di Yu Shen Qian Xu 《China Geology》 2020年第2期262-268,共7页
A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 13... A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 138.9±3.0 Ma and 139.0±1.9 Ma,respectively.These two Early Cretaceous ages are similar with the ages of the more abundant mafic rocks in the eastern Tethyan Himalaya,indicating that this suite of ultramafic and mafic rocks in the Chigu Tso area should be included in the outcrop area of the Comei Large Igneous Province(LIP).These ultramafic rocks provide significant evidence that the involvement of mantle plume/hot spot activities in the formation of the Comei LIP.Baddeleyite U-Pb dating by SIMS is one reliable and convenient method to constrain the formation time of ultramafic rocks.The dating results of baddeleyite and zircon from the olivine pyroxenite samples in this paper are consistent with each other within analytical uncertainties,suggesting that baddeleyite and zircon were both formed during the same magmatic process.The consistency of baddeleyite U-Pb ages in the Chigu Tso area with zircon U-Pb ages for a large number of Early Cretaceous mafic rocks in the eastern Tethyan Himalaya further support that zircon grains from such mafic rocks yielding Early Cretaceous ages are also magmatic in origin. 展开更多
关键词 U-Pb dating BADDELEYITE ZIRCON Ultramafic rock Comei Large Igneous Province Kerguelen plume Tethyan Himalaya Geological survey engineering Tibet China
下载PDF
Behavior of apatite in granitic melts derived from partial melting of muscovite in metasedimentary sources 被引量:3
3
作者 li-e gao Ling-sen Zeng +2 位作者 Ling-hao Zhao Jia-hao gao Zhen Shang 《China Geology》 2021年第1期44-55,共12页
Fluid-absent and fluid-fluxed melting of muscovite in metasedimentary sources are two types of crustal anatexis to produce the Himalaya Cenozoic leucogranites.Apatite grains separated from melts derived from the two t... Fluid-absent and fluid-fluxed melting of muscovite in metasedimentary sources are two types of crustal anatexis to produce the Himalaya Cenozoic leucogranites.Apatite grains separated from melts derived from the two types of parting melting have different geochemical compositions.The leucogranites derived from fluid-fluxed melting have relict apatite grains and magmatic crystallized apatite grains,by contrast,there are only crystallized apatite grains in the leucogranites derived from fluid-absent melting.Moreover,apatite grains crystallized from fluid-fluxed melting of muscovite contain higher Sr,but lower Th and LREE than those from fluid-absent melting of muscovite,which could be controlled by the distribution of partitioning coefficient(D_(Ap/Melt))between apatite and leucogranite.D_(Ap/Melt) in granites derived from fluidabsent melting is higher than those from fluid-fluxed melting.So,not only SiO_(2) and A/CNK,but also types of crustal anatexis are sensitive to trace element partition coefficients for apatite.In addition,due to being not susceptible to alteration,apatite has a high potential to yield information about petrogenetic processes that are invisible at the whole-rock scale and thus is a useful tool as a petrogenetic indicator. 展开更多
关键词 APATITE Partitioning coefficient Crustal anatexis LEUCOGRANITE Malashan Dome Tethyan Himalaya Geological survey engineering Tibet
下载PDF
Early Eocene leucocratic sill/dike swarms in the Gangdese belt, southern Tibet: Tectonic implications for Indo-Asian collision 被引量:3
4
作者 Xu-xuan Ma li-e gao +2 位作者 Zhong-bao Zhao Xi-jie Chen Hai-bing Li 《China Geology》 2021年第1期56-66,共11页
The timing of the initial Indo-Asian collision is a subject of debate for a long time.Besides,the magmatic trace of the collisional process is also unclear.In the present study,the authors report Early Eocene leucocra... The timing of the initial Indo-Asian collision is a subject of debate for a long time.Besides,the magmatic trace of the collisional process is also unclear.In the present study,the authors report Early Eocene leucocratic sill/dike swarms in the northern edge of the Nymo intrusive complex of the Gangdese belt,southern Tibet.The Nymo intrusive complex was emplaced at ca.50–47 Ma and surrounded by the metamorphosed Jurassic-aged Bima Formation volcano-sedimentary sequence along its northern side.At outcrops,the leucocratic sills/dikes intruded along or truncated the deformed foliations of the host Bima Formation,which has been subject to high-temperature amphibolite-facies metamorphism at ca.50–47 Ma.Detailed cathodoluminescence image analyses reveal that the zircon grains of the leucocratic sills/dikes have core-mantle textures.The cores yield the Jurassic ages comparable to the protolith ages of the Bima Formation.In contrast,the mantles of zircon grains yield weighted mean ages of ca.49–47 Ma,representing the crystallization timing of these leucocratic sills/dikes.The coeval ages for the Nymo intrusive complex,the high-temperature metamorphism,and the leucocratic sills/dikes indicate that a close relationship exists among them.The authors tentatively suggest that these leucocratic sills/dikes were generated from partial melting of the Jurassic-aged Bima Formation volcanic rocks,triggered by the high heat from the magma chamber of the Nymo intrusive complex.This Early Eocene tectono-thermal event of coeval magmatism,metamorphism and partial melting was most likely formed during the Indo-Asian collisional setting. 展开更多
关键词 Leucocratic sill/dike swarm Early Eocene Indo-Asian collision GANGDESE Tibet China
下载PDF
Neoproterozoic magmatism in eastern Himalayan terrane 被引量:6
5
作者 Yuhua Wang Lingsen Zeng +5 位作者 li-e gao Chunli Guo Kejun Hou Lifei Zhang Wei Wang Huiyi Sun 《Science Bulletin》 SCIE EI CAS CSCD 2017年第6期415-424,共10页
Geochronological investigation on gneisses of granitic to leucogranitic compositions in Cuona,south Tibet,reveal that their protoliths formed at 808.8 ± 7.9-816.4 ± 3.4 Ma and 855.8 ± 7.0 Ma,respectivel... Geochronological investigation on gneisses of granitic to leucogranitic compositions in Cuona,south Tibet,reveal that their protoliths formed at 808.8 ± 7.9-816.4 ± 3.4 Ma and 855.8 ± 7.0 Ma,respectively.Zircon rims from the granitic gneiss record a metamorphic age of 739.4 ± 4.3 Ma.Lu-Hf isotopic analyses on zircon grains with Neoproterozoic ages yield negative ε_(Hf)(t) values from-9.0 to-4.2,and the corresponding two-stage Hf model ages are 1965-2228 Ma.Whole-rock geochemical data indicate that all granitic gneisses are K-riched calc-alkali series.These new data together with literature data show that(1) the Himalayan terrane experienced an episode of Neoproterozoic magmatism at 850-800 Ma;(2) the Neoproterozoic magma of granitic compositions were derived from partial melting of ancient crusts,possibly due to the thermal perturbation related with the breakup of the Rodinia supercontinent. 展开更多
关键词 Granitic gneiss Neoproterozoic magmatism Zircon U-Pb dating Eastern Himalaya
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部