We demonstrate a triple-pass scheme for coherent transfer of optical frequency and the delay effect on the fiber phase noise compensation. It is theoretically proved that the delay effect consists of both fiber delay ...We demonstrate a triple-pass scheme for coherent transfer of optical frequency and the delay effect on the fiber phase noise compensation. It is theoretically proved that the delay effect consists of both fiber delay and servo delay. The delay effect confines the servo bandwidth within 1/8 and induces a residual fiber phase noise after noise compensation. For a 25-km-long fiber, the servo bandwidth is found to be around 1 k Hz, and the fiber phase noise is suppressed approaching to the theoretical limitation. The triple-pass scheme enables the simultaneous transfer of optical frequency to multiple remote users. The performance of noise compensator in the triple-pass scheme can achieve a similar level result compared with that in the double-pass scheme.展开更多
Anomalous diffusion is a widespread physical phenomenon,and numerical methods of fractional diffusion models are of important scientific significance and engineering application value.For time fractional diffusion-wav...Anomalous diffusion is a widespread physical phenomenon,and numerical methods of fractional diffusion models are of important scientific significance and engineering application value.For time fractional diffusion-wave equation with damping,a difference(ASC-N,alternating segment Crank-Nicolson)scheme with intrinsic parallelism is proposed.Based on alternating technology,the ASC-N scheme is constructed with four kinds of Saul’yev asymmetric schemes and Crank-Nicolson(C-N)scheme.The unconditional stability and convergence are rigorously analyzed.The theoretical analysis and numerical experiments show that the ASC-N scheme is effective for solving time fractional diffusion-wave equation.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61378037the Fundamental Research Funds for the Central Universities under Grant No JUSRP51628B
文摘We demonstrate a triple-pass scheme for coherent transfer of optical frequency and the delay effect on the fiber phase noise compensation. It is theoretically proved that the delay effect consists of both fiber delay and servo delay. The delay effect confines the servo bandwidth within 1/8 and induces a residual fiber phase noise after noise compensation. For a 25-km-long fiber, the servo bandwidth is found to be around 1 k Hz, and the fiber phase noise is suppressed approaching to the theoretical limitation. The triple-pass scheme enables the simultaneous transfer of optical frequency to multiple remote users. The performance of noise compensator in the triple-pass scheme can achieve a similar level result compared with that in the double-pass scheme.
基金by the Subproject of Major Science and Technology Program of China(No.2017ZX07101001-01)the Fundamental Research Funds for the Central Universities(Nos.2018MS168 and 2020MS043).
文摘Anomalous diffusion is a widespread physical phenomenon,and numerical methods of fractional diffusion models are of important scientific significance and engineering application value.For time fractional diffusion-wave equation with damping,a difference(ASC-N,alternating segment Crank-Nicolson)scheme with intrinsic parallelism is proposed.Based on alternating technology,the ASC-N scheme is constructed with four kinds of Saul’yev asymmetric schemes and Crank-Nicolson(C-N)scheme.The unconditional stability and convergence are rigorously analyzed.The theoretical analysis and numerical experiments show that the ASC-N scheme is effective for solving time fractional diffusion-wave equation.