We investigate the nonsequential double ionization(NSDI) of linear triatomic molecules by the counter-rotating two-color circularly polarized(CRTC) laser fields with a classical ensemble method. The results of the sim...We investigate the nonsequential double ionization(NSDI) of linear triatomic molecules by the counter-rotating two-color circularly polarized(CRTC) laser fields with a classical ensemble method. The results of the simulation reveal that NSDI yield strongly connected with the relative phase. The trajectory tracking method shows that the return time of the electron is controlled by the relative phase. In addition, when we change the CRTC laser wavelengths, the relative phase of the maximum and minimum yield of NSDI also changes. This shows that the influence of the Coulomb potential in the triatomic molecules on the electron return process cannot be ignored. This work will effectively promote the electronic dynamics study of NSDI for the triatomic molecule.展开更多
基金supported by the Natural Science Foundation of Shanghai (Grant No. 18ZR1413600)。
文摘We investigate the nonsequential double ionization(NSDI) of linear triatomic molecules by the counter-rotating two-color circularly polarized(CRTC) laser fields with a classical ensemble method. The results of the simulation reveal that NSDI yield strongly connected with the relative phase. The trajectory tracking method shows that the return time of the electron is controlled by the relative phase. In addition, when we change the CRTC laser wavelengths, the relative phase of the maximum and minimum yield of NSDI also changes. This shows that the influence of the Coulomb potential in the triatomic molecules on the electron return process cannot be ignored. This work will effectively promote the electronic dynamics study of NSDI for the triatomic molecule.